
Page 1/28

You may not use this tutorial for any other purpose than learning, working or

having fun... In other words: You can use this PDF tutorial for anything You’d like,

as long as it doesn’t involve both a hammer and a squirrel.

koobare@koobare.com

Page 2/28

Welcome, space-sai lor wannabes!

Welcome to another one of Koobare’s little tutorials, teaching you how to effectively and

efficiently use the best multimedia authoring tool ever – Multimedia Fusion 2 by Clickteam! In

this tutorial we’ll learn some cool new stuff about what MMF2 can do – and we’ll, of course,

learn that by practice, creating a groovy space shooter with tons of action, killer droids, lasers,

green explosions and – last but not least – a simple bullet-time mode.

“Wait a second! Has he just said bullet-time?”, asked Cobra Commander astonished beyond

measure. “That’s what I’ve heard!”, quickly replied Destro, his silver head shining like a giant

light bulb. “The man is obviously lunatic! Doesn’t he know that only games with gargantuan

budgets can employ such things as bullet-time and time manipulation? Hah!”. They both

chuckled and returned to their plans for worldwide domination.

Well… Dear Destro, dearest Cobra Commander, never underestimate the power of Multimedia

Fusion 2! Not only shall we create a bullet-time effect (if you don’t know what it is – think Matrix,

Max Payne, Hard Boiled, Blade…), but we’ll do it in just a few Events! Furthermore, I’ll toss in a

hip all-graphics-inverted look and – voila! – we’ll have a professional movie-like special effect

with hardly any work involved. How’s that even possible? Thank Clickteam and their brilliant

creation, ‘cause MMF2 makes even the hardest coding tasks easy to accomplish. Heck, it’s as

easy as finding a Stormtrooper on the Death Star, and I guess that’s saying something.

Anyways, let’s take a deeper look at what we’re going to create here: Space Corsair is going to

be a simple shoot 'em up game, in which the player controls a single battle-hardened starship

(which is named Space Corsair, by the way – yeah, I guess I went quite cheap with the title, but

I’ve done that before with the Smelly Claw tutorial so don’t act surprised). Space Corsair’s

captain, Jacob Keyes the Second (Jacob Keyes of Halo fame, I salute you!), has got a pretty

big problem at his hands – he just went out of hyperspeed and found himself and his crew

surrounded by hundreds of spinning killerbots, ready to either tear his ship apart with their

lasers or to ram into it’s hull kamikaze-style. The point is – whether Keyes likes it or not, he now

has to shoot his way out of massive trouble.

Oh, there’s also a catch, almost forgot about that – our starship ain’t that new, you see, it has

seen better days, and because of that it’s laser cannon is… well, let’s call it “less effective than

you might expect”. It takes two head-on blasts to damage any of the droids out of commission,

and their complete annihilation is actually out of your reach, no matter how much shots you’ll

Page 3/28

fire towards on of them… Yeah, that’s right – we can damage the droids so that they cannot

use their cannons at us, but we still have to maneuver ourselves out of a collision course with

that blasted pile of metal and wires, it doesn’t just disappear into thin vacuum.

So, you now officially know the story, cadet. It’s time to set up our game and make sure that

everything plays out just the way we want it to. No more chit-chatting, no more G.I.Joe

references (at least for a while), let’s go and teach those spacedroids a lesson!

And may the stars guide us!

 If you have any problems with this tutorial, or notice that there are some

mistakes present, please, contact me and I’ll do my best to help you and

replace all the errors with correct information.

 Contact me at: marchewkowy@gmail.com

 Note: I’ve been receiving some reports that not all e-mails get to me for some

reason. Seems that some of them (quite a lot) end up in my spambox or are

blocked out by the server. I dunno why this is happening, so if you’re experiencing

any difficulties with delivering me a message or haven’t received a reply in quite some

time, please, send me another e-mail at koobare@koobare.com. I’ll do my best to

check both these e-mails regularly.

Page 4/28

Part I: Setting up the application.

Let’s make this magic happen already! Firstly,

open up Multimedia Fusion 2, create a new

application and be sure to save it onto your hard

drive (I’m gonna’ repeat myself one more time

here: it’s a good thing to have the “Autobackup”

option turned on – be sure to check your

“Preferences” window).

Now, once we have our new app ready & waiting,

go to your application’s Properties window (it

should open up automatically – if it doesn’t, right

click on your application’s name in the workspace

toolbar and choose “Properties” from the drop-

down menu). Leave everything as is in the first tab

(Settings) – it should look just like this little

screenshot in the top right corner of this page.

Let’s move on. Select the Window tab (second

from the left, the one with the little computer

screen). Set the window size to 800x600. MMF2

will ask you whether you’d like to modify all the

frames that have the same size as the

application’s window – click on “Yes” (it will resize

the one and only frame that’s in our application).

Before we move on – double check if the “Change

Resolution Mode” option is off. We want our game

to be windowed, not full screen.

Once that’s done, let’s move on to the Runtime

Options (it’s shown to the right if you need some

visual aid). Make sure that the Multi-samples

option is on (our game will play multiple sound

effects at one time, so that’s pretty important if we

don’t want any sound glitches).

Page 5/28

Then, last but not least (actually, this is THE most important setting for this game!), set the

Frame Rate to 70. Setting a higher Frame Rate (also known as the FPS Count – Frames per

second, not First Person Shooter in this case) can change quite a lot of things, from the overall

speed of the game to the animation speed of each and every Active object on the playfield.

Setting a higher Frame Rate makes your game run faster and look smoother (animations take

less time to loop), but has a bit of a negative impact on your game’s system requirements – if it

has lots and lots of heavily animated objects on screen, with lots of calculations being made in

real-time, a higher Frame Rate can make your game a bit jumpy and rough-looking on some

older computers (although that’s not a common case). Setting the Frame Rate to a lower value

makes yoouurrr gaamee ffaassstt aaasss aaa tuurrtllleee – set it too low and you’ll have time to

make yourself some tea while your laser beam crawls through space in search of a droid,

moving so sluggish that you won’t be sure if it’s even really traveling any distance.

You can choose any Frame Rate from

1 to 1000, but from my experience it’s

better to stick to values between 30

and 100 for the best effect – 50 is

considered to be the standard,

generic FPS value. I usually stick to

50 FPS with most of my creations, but

you can experiment on your own to

check which Frame Rate would suit

your game…

Anyways, we’ve just set our Frame

Rate to 70 and let’s keep it that way,

shall we? We’ll poke this subject a bit

more once we get to the Bullet time

section of this tutorial, as for now just remember that changing the FPS can be pretty useful

sometimes – especially that you can change it in the Event editor, during runtime.

OK, let’s get back to our Properties window. Open up the Values tab (fourth from the left) –

we’re going to set up all the global values we’ll need to create this game the way it’s meant to

be. Don’t be worried, there’s not many of them. Create three values – name them

“Gamespeed”, “DestroyedDroids” and “TimeOut” respectively, from top to bottom (so that

“Gamespeed” is the first one on our list) and make sure they’re all set to zero.

Page 6/28

Got it? Great! By now, we‘ve made all the important changes in the main properties of our

game, although there are still some less important thingies to do before we wander off to the

next part of this tutorial.

Firstly, let’s change our application’s name to “Space

Corsair” (right click on your app’s name in the Workspace

Toolbar and choose “Rename” from the drop-down

menu). Secondly, make sure that our frame has a size of

800x600 pixels and rename it to “tutorial”. Renaming all

this stuff is purely cosmetic of course, but I’d like to keep

your creation as similar to mine as possible – just to be

sure that we won’t have any problems when there’ll be a

need for troubleshooting or error correction.

If you wish, you can also change the icons for our application (open up the About tab, select

the “Icon” field and click on the “Edit” button), but that’s not really necessary. Try to remember

about this when creating your own games though – it’s good to have your own custom-made

icons for a project that you’ve spent some time on. Anyways, let’s move on to the next part of

this tutorial, there’s still plenty to do.

Part II: Let’s get these objects on stage!

It’s now time to import all the objects we

want to have in our little game. Normally

you’d have to create Backdrop or Active

objects inside the Frame editor and either

fill them with your drawings using MMF’s

inbuilt Image Editor or import their

“insides” from exterior image files

(prepared in a different program, like

Photoshop, Paintbrush or GIMP). We’ll

skip this “prepare from scratch” approach

in this tutorial, if you’d like to know how

it’s done step by step, either check out

one of the earlier tutorials or the Image

Page 7/28

Editor Guide – they’re all available at Clickteam’s website of course. Anyways, what we’re

gonna’ do here is open up an .mfa file I’ve prepared earlier and just copy + paste all the objects

that are waiting inside. Let’s do that now.

Open up the “spacelibrary.mfa” file, which was packed into the same archive as this .PDF

tutorial. Select all the objects (the easiest way to do so would be by pressing CTRL+A on your

keyboard), copy and then paste them into the first (and only) frame of our game, and... Voila!

We’ve got all the objects we’ll need in one place!

 Please note: some of the objects use alpha channels, a feature that is

 unavailable in Games Factory 2 (TGF2 users should use basic library

 objects or create their own graphics instead).

Part III: Know thy objects.

OK, so we’ve just imported all the needed objects into the frame. It’s now time to learn

something about them – why do we need them, what are they for, little snippets of info like that.

Let’s do this in an organized manner, alphabetically:

Icon: Object: So… What is it?

enemy.creator

Enemy creator, active object that will be used to spawn
enemies at it’s current position.

green.sparks

Green flashing sparks that will be “shooting” from a droid
when it has been destroyed.

health.counter

A simple horizontal bar counter. Acts as the health/shields
counter for the Space Corsair.

laser.boom

A big green explosion – an animation that is always created
when you’re blowing something up (i.e. a droid).

Page 8/28

Icon: Object: So… What is it?

laser.enemy

Enemy’s projectile – a red laser beam. Sure the enemy’s
gonna shoot back from time to time, didn’t ya’ know that?

laser.field

Energy field displayed when green laser beams are emitted
from Space Corsair’s guns and when they hit their targets.

laser.player

Space Corsair’s projectile – a green laser beam. Takes two
of them to destroy a single spacedroid.

points.counter

It’s here to count points and uses a cool “glowing” blue font.
What else to add?

ripper.droid

Ripper spacedroid, rotator-hunter class. Designed to make
your life a bit harder. In other words: the enemy.

space.corsair

Space Corsair, player’s starship. Still a fine piece of metal,
but she ain’t as young and lively as she once was…

speed.counter

Another counter, we’ll use it to support our game’s
mechanics, Bullet Time in particular.

speeding.star.1

A semi-transparent object that’ll help us create the illusion
that Space Corsair is moving through space really fast.

speeding.star.2

As above, but a bit thinner. Active object that’ll help us
imitate fast interstellar movement.

starfield

An Active object that will act as our background picture –
note that we’re using an Active object, not a Backdrop.

stars.creator.1

Active object that’ll be used to shoot “speeding star” objects,
moves along a predefined path.

stars.creator.2

As above – an object used to spawn “speeding star” objects,
but this time, instead of moving along a path, it appears at a
random X position, between 0 and 800.

And that’s it – sixteen objects. Three counters (one set up as a horizontal bar, one number-

based, one hidden), thirteen actives, no backdrops (we’ll see why the “starfield” object is an

active instead of a Backdrop later on)…

Page 9/28

Part IV: Know thy goal.

What’s the first thing a general must

know before planning out a battle?

No, not his army’s status, not his

tactical situation, not even the fact

that he’s sitting on a horse wearing

only pajamas – the first thing that he

should know, understand and grind in

his brain is the main objective, the

purpose, the thing that he’s aiming for

– the über-important GOAL. In other

words – to fight, to try to achieve the

victory he must know what “victory”

means, what is the aim of the

upcoming struggle.

Come to think of it – do we really know what our GOAL is? We now know the pawns that will be

used in our game, but do we really know the rules? Let’s sum up what we know about all of

this, about the thingie we’re trying to assemble here… “Space Corsair”, basically, is a space

shooter in which the player controls an armed starship, there are some weird spacedroids as

enemies and there’ll be a Bullet Time mode somewhere in the middle of all of this. Hmm,

seems that our info is a bit rough on the edges. Time for an imaginary playthrough.

Someone double clicks on the icon, the game starts. Here you are – controlling the Space

Corsair with keyboard arrows (left and right only – we can’t move up or down), the ship seems

to be speeding through space, stars pass you by with incredible velocity… Suddenly, they

attack. They start falling from the top of the screen, spinning like if they were invented by a

madman. At first there’s only one, but after just a second they start swarming towards you. You

move quickly to the left, to get one of the attacking spacedroids right in front of your ship, then

you hastily press space. A green laser beam shoots from the cannon installed at your ship’s

bow, it rushes towards one of the mechanical opponents and hits him with a gnashing sound. A

green flash pours all over the vicious machine and… Nothing happens. “Darn droid”, you think,

“it’s got a reinforced hull! One blast is not enough!”. Quickly, you press space again, releasing

another shot of condensed energy. It hits the machine, blasts through it’s hull and obliterates

it’s main CPU. The explosion was not enough to shred the droid to pieces, but it left it’s

mechanical body drifting through space.

Page 10/28

And that’s just the beginning – you’re going to shoot down hundreds of spacedroids,

maneuvering around hollow metallic corpses, trying to avoid both collisions and laser beams

aimed at your starship… It may sound easy, but there’s a great chance you’ll be over your

head! Be aware that colliding with both destroyed and active opponents will inflict damage to

your ship’s shields and armor, although smashing into a “dead” droid is slightly less harmful.

Thankfully, Space Corsair is equipped with an extra layer of duranium metal around the main

protective shielding, so she should be able to take quite a few bumps & laser hits before

loosing hull integrity. What’s also worth mentioning is that you can remove a floating spacedroid

corpse out of your way – shooting at it will slightly alter it’s trajectory, enabling you to slip

sideways without taking a hit.

For every shot delivered to an enemy you’ll receive points – a single point if your lasers were

smashing into an empty tin can, devastated by your earlier blasts, 15 points if you shot a droid

that’s still active and ready to get you. Your mission is to gather… one million points. “Two

bucks and a dime say it won’t happen”, said Destro to Cobra Commander. “No way anyone’s

that stubborn. Or foolish.” Well… Seems to me you can be right this time, shinyhead. But I’m

not gonna’ join your bet. Anyone willing to show Destro that reaching one million points is

possible? Just don’t forget to eat and sleep, take turns with your friends, wolverines!

Anyways, let’s get to the good part: the

aforementioned Bullet Time. Once you’ve

destroyed 20 droids, leaving their hull

crushed by your lasers, with sparkles

shooting all around, something happens.

Background music suddenly changes, you

hear a strange phasing sound and you

abruptly find yourself in a game that looks a

tad different than it looked a few seconds

before – everything’s moving slower,

spacedroids are rotating at a snail's pace, your lasers aren’t green anymore, they’re purple, and

the same goes for explosions… “Nah, this looks nice but it really isn’t that cool”, you think to

yourself. Until you press space. “Leaping fiery lizards of doom!”, you howl at your screen, “I can

now shoot twice as fast, when compared to those metallic muppets! I’m a messenger of

destruction, ready to knock your antennas out of the sky, now bring it on!”.

After 20 seconds of this Bullet Time mode your back to your normal speed. And you suddenly

realize that scoring one million points ain’t gonna’ be easy.

Page 11/28

Part V: Know thy properties.

After this short fantasy playthrough, let’s get back to our Frame Editor. We’ve got all our objects

thrown into the frame, but we have yet to set their properties and reposition them around.

Firstly, select the “space.corsair” object, go

to it’s Properties window and open up the

Movement tab (the one with the little blue

man running). Change the Type of

movement to Eight Directions, set it’s

Directions to left and right (0 and 16), set

the Initial direction to none and make sure

that Speed, Deceleration and

Acceleration values are all set to 50. If you

need any visual aid – take a look at the

screenshot to the left. Got it? Great! That

means we’ve just prepared our Space

Corsair for it’s sharp maneuvers around

those spinning spacedroids. Now, open up

the Size / Position tab and change our

starship’s X position to 400 and it’s Y

position to 470. The object will now spring

into the right position.

Let’s select the second object, the “ripper.droid” one. It has it’s movement already set up, but

let’s take a look at how it’s done. Open up the Movement tab, notice that the type of movement

is set to Path (one of the simplest movements in MMF2) and press the “Edit” button. The path

is just a straight line from top to bottom, without any extra twists and turns, so our enemies will

just slide from top to the bottom of the screen. Our spacedroid also has a second movement

set up – choose it up from the Movements list – a Bouncing Ball movement, that will be

activated once the droid is destroyed. Once you’re done examining this, open up the Size /

Position tab and set the droid’s position to X=400, Y=30. Last thing to do here before moving

on to the next object: go to the Values tab (the one third from right), create a new Alterable

Value and rename it to “Damage”. Got it? Great!

You can now examine all the remaining objects, just to understand how they work and how

they are set up in this game. Double click at the “points.counter” to open up the set of images

Page 12/28

that acts as it’s numbers – those are just some simple numbers with an additional “glow” effect

I’ve added in an exterior graphics program and imported into MMF2. Check out the

“health.counter” object to notice that it’s Initial and Maximum values are both set to 120, while

the Minimum value is set to 0 – if you’d like the Space Corsair to have a heavier hull armor, just

change the Maximum and Initial values to 250 (if you want it to be weaker – just put some lower

numbers in there). One more thing worth noticing – the “green.sparks” object has a Fade out

transition set to a 0,11 second fade effect.

Once you’re done exploring, let’s get all these objects to their proper positions. Use this table to

input all those X and Y position values for all the remaining objects – if there’s an “[out]” text

instead of a coordinate, just place your object somewhere outside of the frame (although not

too far away, anything within the range of 150 pixels should do good):

Object: X position: Y position: Object: X position: Y position:

health.counter

20 55

points.counter

285 50

enemy.creator

40 -70

starfield

0 0

stars.creator.1

10 -45

stars.creator.2

788 -40

laser.enemy

[out] [out]

laser.player

[out] [out]

laser.boom

[out] [out]

laser.field

[out] [out]

speed.counter

[out] [out]

green.sparks

[out] [out]

speeding.star.1

[out] [out]

speeding.star.2

[out] [out]

Once your done with all this repositioning – let’s move on. We’re finally heading for the

programming part of this tutorial, so you may as well start cheering already. Yaay!

Page 13/28

Part VI: Programmer’s delight.

It’s finally time to get to the fun part of this here tutorial – the programming! Save your project

(always remember to save it from time to time!) and open up the Event Editor. If you’re new to

my tutorials, let me introduce you to my event-recording system. If you know it already – just

skip this frame below and quickly move on to the coding part:

Koobare’s MMF-to-paper coding system

 IF (Condition): [Object for the condition] > Condition group > Condition

 THEN (Action): [Object for the action] > Action group > Action

Seems simple, right? Well, that’s just because IT IS simple.

All the conditions are marked in red, while actions are written in fancy blue.

Object names are always put in [square brackets]. The final condition/action is

always in Italic.

If we’ll have a multi-condition event, then it’ll be like this:

 IF (Condition 1): [Object for condition 1] > Condition group 1 > Condition 1

 IF (Condition 2): [Object for condition 2] > Condition group 2 > Condition 2

 THEN (Action): [Object for the action] > Action group > Action

Whereas a multi-action event looks like this:

 IF (Condition): [Object for condition] > Condition group > Condition

 THEN (Action 1): [Object for the action 1] > Action group 1 > Action 1

 THEN (Action 2): [Object for the action 2] > Action group 2 > Action 2

If you’ll have to input anything by keyboard, it will be indicated by coloring the text

green and using < angle brackets >, like this:

 < Set the Global Value A to 32 >

Page 14/28

Additional comments, instructions and info will be put in << double angle

brackets >>, using a different color:

 << Select any wave sound from the MMF2’s sound library >>

From time to time I’ll also use this style to throw in some extra tips about MMF2.

All you have to do is to go step-by-step through all the listed events and keep

one eye on your Event Editor, and the second one on this tutorial…

Making it all work…

1) Firstly, let’s start with the traditional “Start of frame” event, which I usually create at the very

beginning. This event – triggered when someone opens up our game – will start some nice

music in the background and will make sure that our gamespeed counter (the “speed.counter”

object) is set to 70 (this isn’t actually necessary, I’m just a typical double-checker, I like to be

sure that everything’s gonna’ be fine).

IF: [Storyboard Controls] > Start of frame

THEN: [Sound Object] > Samples > Play and loop sample

<< Select any music from MMF2’s library, set the loop to 0 times – a continuous loop.

I chose the “Spatial Maths” track, which I think suits this game perfectly >>

THEN: [speed.counter] > Set Counter

 < input: 70 >

And that’s that – we’ve got our first event ready & waiting. To all you newcomers – hope that

this MM2-to-paper scripting system seemed easy enough? Anyways, let’s move on.

2) Time for the second event – this one will be based on the Always condition. This event will

make sure of a few things: firstly – it’ll always set the Frame Rate of our game to the value of

the gamespeed counter (“speed.counter”). Secondly – it will always set “stars.creator.2” to an X

position between 0 and 800, every event cycle. This means that “stars.creator.2” will be

traveling very rapidly between positions, making our stars in the background appear more

randomly. Finally – this event will make sure that the points counter is always displayed on top

Page 15/28

of other things (for example, if a new spacedroid is created it usually is displayed on top of all

the previously created objects, so this event will help to override that). Here’s how it’s all done:

IF: [Special Object] > Always

THEN: [Storyboard Controls] > Set Frame Rate

< input: value("speed.counter") or click on the Retrieve data from an object button, select

the [speed.counter], choose Current Value from the right-click menu >

THEN: [points.counter] > Order > Bring to front

THEN: [stars.creator.2] > Position > Set X position

< input: Random(800) >

Got it? Great! Here’s what we should have by now... Note that it doesn’t have to look identical!

3) It’s always good to use groups in your creations. Groups make it a lot easier to organize all

those events, which can be pretty helpful and help preventing common mistakes. So, let’s

create ourselves a new group. Right click on the box that has number 3 written on it, then

select Insert > A group of events. Name the group “Which Mode” and make sure that the

option “Active when frame starts” is turned on. After that, create two more groups – “Slow

Mode” (“Active when frame starts” should be off with this one) and “Normal Mode” (“Active

when frame starts” option should be once again on). Once that’s done, let’s get back to the

“Which Mode” group, open it up and create this event inside:

IF: [Special Object] > Compare to a global value

<< Choose value DestroyedDroids >>

< compare if it is Equal to 20 >

THEN: [Sound Object] > Samples > Stop a specific sample

<< Select the background music you’ve selected in our first event >>

THEN: [Sound Object] > Samples > Play and loop sample

<< Select any music from MMF2’s library, set the loop to 0 times – a continuous loop.

I chose the “Black Hole” track, which I think suits this part of the game perfectly >>

THEN: [Sound Object] > Samples > Stop a specific sample

<< Select the background music you’ve just selected – “Black Hole” in my case >>

Huh? We’re stopping the sample we’ve just started playing? How come? Well, we actually want

this to look a bit differently than it looks now, so dontcha’ worry, we’ll sort all of this in a second.

Page 16/28

To make this as clear as possible… We have to put out the “stop a specific sample” action for

both tracks we’ve selected earlier (“Black Hole” and “Spatial Maths” in my example), just to be

sure that they won’t double-play, resulting in dreadful cacophony. So, why didn’t we put both

the “stop a specific sample” actions already at the beginning? Because we have to tell MMF2

what samples are we going to play as our music – to stop sample “X” you have to select it from

a list, and it won’t be there if there’s no “play sample X” somewhere in your event list. Anyways,

it’s all good, the only thing we need to do now is to drag & drop the “Play and loop sample”

action to be after the “stop a specific sample” one. Just do this and we’re home:

<< Double click on the “check” symbol under the Sound object for this event >>

<< Drag & the drop the “Play sample [name of sample] 0 times” to the end of the list >>

Got it? Great! Let’s continue with this event, this ain’t the end yet! As I explained earlier, once

the player shoots 20 spacedroids (and that’s the condition for this event, in case you already

forgot), our game enters a different mode, the Bullet Time mode (also known as the slow

mode), and then it resets the “number of destroyed droids” value:

THEN: [Special Object] > Change a global value > Set

<< Choose value Gamespeed >>

< input: 1 >

THEN: [Special Object] > Group of events > Activate

<< Select the Slow mode group >>

THEN: [Special Object] > Group of events > Deactivate

<< Select the Normal mode group >>

THEN: [Sound Object] > Samples > Play sample

<< Select any “phasing” sound from MMF2’s library, I chose the “Beam Down” sample >>

THEN: [Special Object] > Change a global value > Set

<< Choose value DestroyedDroids >>

< input: 0 >

4) Once that’s done, let’s create another event right below, inside the same group of events.

The previous event made sure that player enters the Bullet Time mode every time he shoots

down 20 spacedroids. This event will make sure that he goes back to normal mode after 20

seconds spent with the Bullet Time on:

Page 17/28

IF: [Special Object] > Compare to a global value

<< Choose value TimeOut >>

< compare whether it is Equal to 20 >

THEN: [Special Object] > Change a global value > Set

<< Choose value Gamespeed >>

< input: 2 >

THEN: [Special Object] > Group of events > Activate

<< Select the Normal mode group >>

THEN: [Special Object] > Group of events > Deactivate

<< Select the Slow mode group >>

THEN: [Sound Object] > Samples > Stop a specific sample

<< Select the background music you’ve selected in our first event, i.e. “Spatial Maths” >>

THEN: [Sound Object] > Samples > Stop a specific sample

<< Select the second background music you’ve selected– “Black Hole” in my case >>

THEN: [Sound Object] > Samples > Play and loop sample

<< Select the music you’ve previously selected in the first event, “Spatial Maths” in my

example, then set the loop to 0 times – a continuous loop >>

THEN: [Sound Object] > Samples > Play sample

<< Once again the “phasing” sound – the “Beam Down” one in my example >>

THEN: [Special Object] > Change a global value > Set

<< Choose value TimeOut >>

< input: 0 >

5) Here’s an event that will make a smooth transition between the faster and slower game

modes (between the normal mode and the Bullet Time one) – remember that this should be

inside the “Which Mode” group:

IF: [Special Object] > Compare to a global value

<< Choose value Gamespeed >>

< compare whether it is Equal to 1 >

IF: [speed.counter] > Compare the counter to a value

< compare whether it is Greater than 30 >

IF: [The Timer Object] > Every

<< Set the timer to 4/100 of a second >>

THEN: [speed.counter] > Substract from Counter

< input: 1 >

6) Here’s yet another event to go into the “Which Mode” group – this one is nearly identical to

the one above, but it goes the other way round:

Page 18/28

IF: [Special Object] > Compare to a global value

<< Choose value Gamespeed >>

< compare whether it is Equal to 2 >

IF: [speed.counter] > Compare the counter to a value

< compare whether it is Lower than 70 >

IF: [The Timer Object] > Every

<< Set the timer to 4/100 of a second >>

THEN: [speed.counter] > Add to Counter

< input: 1 >

7) Time to sort out another little thingie – as I’ve said before, while in the Bullet Time mode our

game will look a bit different, everything seems to change it’s appearance. We’re going to use

the Inverted / Monochrome ink effects to create the desired outcome… This event and the next

one go into the “Which Mode” event group:

IF: [Special Object] > Compare to a global value

<< Choose value Gamespeed >>

< compare whether it is Equal to 1 >

THEN: [space.corsair] > Visibility > Change Ink Effect

<< Choose Inverted >>

THEN: [laser.player] > Visibility > Change Ink Effect

<< Choose Inverted >>

THEN: [laser.field] > Visibility > Change Ink Effect

<< Choose Inverted >>

THEN: [ripper.droid] > Visibility > Change Ink Effect

<< Choose Inverted >>

THEN: [laser.boom] > Visibility > Change Ink Effect

<< Choose Inverted >>

THEN: [green.sparks] > Visibility > Change Ink Effect

<< Choose Inverted >>

THEN: [enemy.creator] > Visibility > Change Ink Effect

<< Choose Inverted >>

THEN: [laser.enemy] > Visibility > Change Ink Effect

<< Choose Inverted >>

THEN: [speeding.star.2] > Visibility > Change Ink Effect

<< Choose Inverted >>

THEN: [speeding.star.1] > Visibility > Change Ink Effect

<< Choose Inverted >>

THEN: [starfield] > Visibility > Change Ink Effect

<< Choose Monochrome >>

Page 19/28

Remember – the “starfield” object has it’s Ink Effect set to Monochrome, not Inverted as all the

others! This is pretty important if you want to keep the darker look of the game…

8) Here’s the event that will erase all those ink effects when the game returns to normal mode:

IF: [Special Object] > Compare to a global value

<< Choose value Gamespeed >>

< compare whether it is Equal to 2 >

THEN: [space.corsair] > Visibility > Change Ink Effect

<< Choose None >>

THEN: [laser.player] > Visibility > Change Ink Effect

<< Choose None >>

THEN: [laser.field] > Visibility > Change Ink Effect

<< Choose None >>

THEN: [ripper.droid] > Visibility > Change Ink Effect

<< Choose None >>

THEN: [laser.boom] > Visibility > Change Ink Effect

<< Choose None >>

THEN: [green.sparks] > Visibility > Change Ink Effect

<< Choose None >>

THEN: [enemy.creator] > Visibility > Change Ink Effect

<< Choose None >>

THEN: [laser.enemy] > Visibility > Change Ink Effect

<< Choose None >>

THEN: [speeding.star.2] > Visibility > Change Ink Effect

<< Choose None >>

THEN: [speeding.star.1] > Visibility > Change Ink Effect

<< Choose None >>

THEN: [starfield] > Visibility > Change Ink Effect

<< Choose None >>

That finishes up the events from this group. Here’s how it looks in my Event editor:

Page 20/28

9) We’re done with events from the “Which Mode” group. Open up the “Slow Mode” group now,

make sure that it’s “active when frame starts” preference is set off (title of this group should be

grey rather than black), and create this event inside:

IF: [The Timer Object] > Every

<< Set the timer to 1 second >>

THEN: [Special Object] > Change a global value > Add to

<< Choose value TimeOut >>

< input: 1 >

As you can see here, this event will add 1 every second to the TimeOut global value so that the

Bullet Time effect can end after 20 seconds.

10) Here’s another lil’ event to create in the “Slow Mode” group – this one controls how

frequently new spacedroids will emerge from the top of the screen while the player is in Bullet

time mode:

IF: [The Timer Object] > Every

<< Set the timer to 1.63 second >>

THEN: [Create New Objects] > Create Object

<< Select the [ripper.droid] object >>

<< Set the coordinates to x=0, y=0 relatively to the [enemy.creator] object >>

11) Now it’s time for the “Normal Mode” group – close up the “Slow Mode” group and open up

the next one. This event is very similar to the one we’ve just created, and it’ll be the only event

present in this group (since there’s no need to countdown to 20 in normal mode):

IF: [The Timer Object] > Every

<< Set the timer to 0.55 second >>

THEN: [Create New Objects] > Create Object

<< Select the [ripper.droid] object >>

<< Set the coordinates to x=0, y=0 relatively to the [enemy.creator] object >>

12) Create a new group of events and rename it to “Background”. Leave it’s “active when frame

starts” option on. Now, let’s create the illusion that our Space Corsair is rushing through space:

IF: [The Timer Object] > Every

<< Set the timer to 0.25 second >>

Page 21/28

THEN: [stars.creator.1] > Shoot an Object…

<< Select the [speeding.star.1] object >>

<< Set Speed of object to 100 >>

<< Select “Shoot in selected directions”, choose direction 24 (directly down) >>

THEN: [stars.creator.2] > Shoot an Object…

<< Select the [speeding.star.2] object >>

<< Set Speed of object to 100 >>

<< Select “Shoot in selected directions”, choose direction 24 (directly down) >>

IF: [The Timer Object] > Every

<< Set the timer to 0.45 second >>

THEN: [stars.creator.1] > Shoot an Object…

<< Select the [speeding.star.1] object >>

<< Set Speed of object to 100 >>

<< Select “Shoot in selected directions”, choose direction 24 (directly down) >>

THEN: [stars.creator.2] > Shoot an Object…

<< Select the [speeding.star.2] object >>

<< Set Speed of object to 100 >>

<< Select “Shoot in selected directions”, choose direction 24 (directly down) >>

IF: [The Timer Object] > Every

<< Set the timer to 0.78 second >>

THEN: [stars.creator.1] > Shoot an Object…

<< Select the [speeding.star.1] object >>

<< Set Speed of object to 100 >>

<< Select “Shoot in selected directions”, choose direction 24 (directly down) >>

THEN: [stars.creator.2] > Shoot an Object…

<< Select the [speeding.star.1] object >>

<< Set Speed of object to 100 >>

<< Select “Shoot in selected directions”, choose direction 24 (directly down) >>

IF: [The Timer Object] > Every

<< Set the timer to 0.97 second >>

THEN: [stars.creator.1] > Shoot an Object…

<< Select the [speeding.star.2] object. Set Speed of object to 100 >>

<< Select “Shoot in selected directions”, choose direction 24 (directly down) >>

THEN: [stars.creator.2] > Shoot an Object…

<< Select the [speeding.star.2] object >>

<< Set Speed of object to 100 >>

<< Select “Shoot in selected directions”, choose direction 24 (directly down) >>

Page 22/28

13) Got it? Great! Once you’ve got those four events all settled down in the “Background” set,

it’s time to create yet another group… Or even four. First of all, create the Main Events group

and open it up. Inside (yup, a group inside a group thing) create three more groups: Droid

Control, Ship Control and Animation. Thanks to this our events will remain well organized

and you’ll be able to edit them anytime later with ease. Now, inside the Droid Control group…

IF: [laser.player] > Collisions > Another object > [ripper.droid]

IF: [ripper.droid] > Alterable Values > Compare to one of the alterable values

<< check if Damage is lower than 2 >>

THEN: [ripper.droid] > Alterable Values > Add to

<< add 1 to Damage>>

THEN: [Create New Objects] > Create Object

<< Select the [laser.boom] object >>

<< Set the coordinates to x=1, y=12 relatively to the [ripper.droid] object >>

THEN: [laser.player] > Destroy

THEN: [Create New Objects] > Create Object

<< Select the [laser.field] object >>

<< Set the coordinates to x=11, y=13 relatively to the [ripper.droid] object >>

THEN: [Create New Objects] > Create Object

<< Select the [laser.field] object >>

<< Set the coordinates to x=-21, y=-2 relatively to the [ripper.droid] object >>

THEN: [Create New Objects] > Create Object

<< Select the [laser.field] object >>

<< Set the coordinates to x=13, y=-22 relatively to the [ripper.droid] object >>

THEN: [Sound Object] > Samples > Play sample

<< Play some sort of a “crash” sound, eventually a sound of an explosion >>

THEN: [points.counter] > Add to Counter

<< input: 15 >>

Looks pretty complicated, right? But don’t worry, it isn’t! Basically, this event tells what happens

when one of our laser shots reaches a spacedroid while he still has some hull armor on him. If

you’d take some time to analyze it line by line you’d see that this is pretty much as easy as it

can be – add points, create some “boom” effects, play a sample and destroy the player’s

laser... And that’s it! Let’s create another event like this…

IF: [laser.player] > Collisions > Another object > [ripper.droid]

IF: [ripper.droid] > Alterable Values > Compare to one of the alterable values

<< check if Damage is greater or equal 2 >>

THEN: [laser.player] > Destroy

Page 23/28

THEN: [Create New Objects] > Create Object

<< Select the [laser.boom] object >>

<< Set the coordinates to x=1, y=12 relatively to the [ripper.droid] object >>

THEN: [Create New Objects] > Create Object

<< Select the [laser.field] object >>

<< Set the coordinates to x=11, y=13 relatively to the [ripper.droid] object >>

THEN: [Create New Objects] > Create Object

<< Select the [laser.field] object >>

<< Set the coordinates to x=-21, y=-2 relatively to the [ripper.droid] object >>

THEN: [Create New Objects] > Create Object

<< Select the [laser.field] object >>

<< Set the coordinates to x=13, y=-22 relatively to the [ripper.droid] object >>

THEN: [Sound Object] > Samples > Play sample

<< Play some sort of a “crash” or “boom” sound >>

THEN: [points.counter] > Add to Counter

<< input: 1 >>

THEN: [ripper.droid] > Movement > Bounce

Note that this time – because the spacedroid is no longer operational, it’s CPU has been

blasted to pieces by earlier laser shots – player only gets a single point instead of fifteen. Plus,

the enemy is “bounced”, which will make more sense if you’ll look at the next few events…

14) Let’s continue – all these events should go into the “Droid Control” group, as they control

how do spacedroids behave and what happens to them after they get hit:

IF: [laser.player] > Collisions > Another object > [ripper.droid]

IF: [ripper.droid] > Alterable Values > Compare to one of the alterable values

<< check if Damage equals 1 >>

THEN: [Special Object] > Change a global value > Add to

<< Choose value DestroyedDroids >>

< input: 1 >

This one counted all the destroyed droids, so that the game knows when to start the Bullet

Time mode – it always starts after you’ve destroyed 20 enemies.

IF: [ripper.droid] > Alterable Values > Compare to one of the alterable values

<< check if Damage is greater or equal 2 >>

THEN: [ripper.droid] > Animation > Stop

THEN: [ripper.droid] > Movement > Multiple movements > Select movement

Page 24/28

<< select “Movement #2” >>

THEN: [ripper.droid] > Direction > Select direction

<< choose directions: 18, 19, 20, 28, 29, 30 >>

<< hold your mouse over a direction box to check it’s number >>

Thanks to the event shown above the droid stops moving along a path when he’s shot two

times and starts “wiggling” around in space, like if it was greatly damaged and lost it’s main

processing unit. Choosing directions from 18 to 20 and from 28 to 30 enables it to still move

towards the player (or rather towards the bottom of the screen), even if it’s movement isn’t

along a path anymore.

IF: [ripper.droid] > Alterable Values > Compare to one of the alterable values

<< check if Damage is greater or equal 2 >>

IF: [The Timer Object] > Every

<< Set the timer to 0.09 second >>

THEN: [Create New Objects] > Create Object

<< Select the [green.sparks] object >>

<< Set the coordinates to x=6, y=4 relatively to the [ripper.droid] object >>

The event above is nothing more than a graphical effect – it creates green sparks around every

droid you destroy.

IF: [ripper.droid] > Pick or count > Pick “ripper droid” at random

IF: [ripper.droid] > Position > Compare Y position to a value

<< check if Y position is lower than 400 >>

IF: [ripper.droid] > Alterable Values > Compare to one of the alterable values

<< check if Damage is lower than 2 >>

IF: [The Timer Object] > Every

<< Set the timer to 1 second >>

THEN: [ripper.droid] > Shoot an Object…

<< Select the [laser.enemy] object. Set Speed of object to 100 >>

<< Select “Shoot in selected directions”, choose direction 24 (directly down) >>

THEN: [Sound Object] > Samples > Play sample

<< Play some sort of not-to-loud sound >>

The event above makes sure that some of the spacedroids actually shoot back…

IF: [ripper.droid] > Position > Compare Y position to a value

<< check if Y position is greater or equal 650 >>

THEN: [ripper.droid] > Destroy

Page 25/28

15) OK, we’re done with the “Droid Control” group, time to create all the events our starship

needs to operate properly – open up the “Ship Control” set. Firstly, let’s create an event that

enables the player to shoot laser beams:

IF: [Keyboard & Mouse Object] > The Keyboard > Upon pressing a key

<< press SPACE on your keyboard >>

THEN: [space.corsair] > Shoot an Object…

<< Select the [laser.player] object >>

<< Set Speed of object to 100 >>

<< Select “Shoot in selected directions”, choose direction 8 (directly up) >>

THEN: [Create New Objects] > Create Object

<< Select the [laser.field] object >>

<< Set the coordinates to x=0, y=0 relatively to the [space.corsair] object >>

THEN: [Sound Object] > Samples > Play sample

<< Play some a “laser” or “shooting” sound >>

Here’s a little event that’ll make sure that player stays on-screen:

IF: [space.corsair] > Position > Test position of “space.corsair”

<< Select “Leaves in the right?” – arrow leaving the frame to the right >>

<< Select “Leaves in the left?” – arrow leaving the frame to the left >>

THEN: [space.corsair] > Movement > Bounce

These two events control what happens if Space Corsair smashes into a spacedroid. Note that

such a collision makes more damage if the droid is still operational:

IF: [ripper.droid] > Collisions > Another object > [space.corsair]

IF: [ripper.droid] > Alterable Values > Compare to one of the alterable values

<< check if Damage is lower than 2 >>

IF: [Special Object] > Limit conditions > Only one action when event loops

THEN: [Sound Object] > Samples > Play sample

<< Play some sort of a “crash” sound >>

THEN (optional): [Sound Object] > Samples > Play sample

<< Only if you wish to play another sound: select an “explosion” sample >>

THEN: [space.corsair] > Animation > Change animation sequence to

<< Select “shot” >>

THEN: [ripper.droid] > Alterable value > Set

<< Set Damage to 2 >>

THEN: [health.counter] > Subtract from Counter

<< input: 5 >>

Page 26/28

IF: [ripper.droid] > Collisions > Another object > [space.corsair]

IF: [ripper.droid] > Alterable Values > Compare to one of the alterable values

<< check if Damage is greater or equal 2 >>

IF: [Special Object] > Limit conditions > Only one action when event loops

THEN: [Sound Object] > Samples > Play sample

<< Play some sort of a “crash” sound >>

THEN (optional): [Sound Object] > Samples > Play sample

<< Only if you wish to play another sound: select an “explosion” sample >>

THEN: [space.corsair] > Animation > Change animation sequence to

<< Select “shot” >>

THEN: [health.counter] > Subtract from Counter

<< input: 1 >>

Here’s an event that controls what happens when you fall into enemy laser beams:

IF: [ripper.enemy] > Collisions > Another object > [space.corsair]

IF: [Special Object] > Limit conditions > Only one action when event loops

THEN: [laser.enemy] > Destroy

THEN: [Sound Object] > Samples > Play sample

<< Play some sort of a “crash” sound >>

THEN (optional): [Sound Object] > Samples > Play sample

<< Only if you wish to play another sound: select an “explosion” sample >>

THEN: [space.corsair] > Animation > Change animation sequence to

<< Select “shot” >>

THEN: [health.counter] > Subtract from Counter

<< input: 5 >>

Since all shield regenerators are on, player’s shields recharge over time – every 5 seconds a

small portion of the health bar is revived:

IF: [The Timer Object] > Every

<< Set the timer to 5 seconds >>

THEN: [health.counter] > Add to Counter

<< input: 1 >>

It’s time to tell the game what should happen when player’s health comes down to 0, or when

he reaches that envisioned one million points… I’m gonna’ put just some simple basic actions

here, but you can tweak it up a bit and – for example – build another level that will be opened

once player has gathered enough points:

Page 27/28

IF: [health.counter] > Compare counter to value…

<< Check whether the counter is lower or equal 0 >>

THEN: [Storyboard Controls] > Restart the application

IF: [points.counter] > Compare counter to value…

<< Check whether the counter is greater or equal 1000000 >>

THEN: [Storyboard Controls] > End the application

16) OK, we’re almost at the end here! Very little left to do… Close the “Ship Control” group and

move to the “Animation” one… There’s not much to do here, just create this:

IF: [laser.boom] > Animation > Has an animation finished?

<< select “Stopped” >>

THEN: [laser.boom] > Destroy

IF: [green.sparks] > Animation > Has an animation finished?

<< select “Stopped” >>

THEN: [green.sparks] > Destroy

IF: [laser.field] > Animation > Has an animation finished?

<< select “Stopped” >>

THEN: [laser.field] > Destroy

IF: [space.corsair] > Animation > Has an animation finished?

<< select “shot” >>

THEN: [space.corsair] > Animation > Change animation sequence to

<< Select “Stopped” >>

Mission accomplished! That’s it! Finally! We’re done here, space pirates! There you have it –

a nice-looking space shooter with a cool Bullet Time effect and lots of spacedroids to destroy.

You can add as many modifications as you wish, try tweaking the difficulty level a bit, have fun

with every aspect of this game!

Thanks for your time and see you again soon!

Cheers!

koobare@koobare.com

Page 28/28

If you have any questions, suggestions or just need help –

 mail me at marchewkowy@gmail.com or koobare@koobare.com

You have been reading…

Created for Multimedia Fusion 2 & Multimedia Fusion 2: Developer

Always be sure to have your MMF2 up-to-date!

