"appbuilders” series

abort download pause download resume download monitor clipboard 4} allfile types

PL_autostrads

add link manually delete selected move up downloads on hold

marchewkowy@gmail.com

Page 1/27

Welcome to another one of Koobare’s little tutorials, teaching you — as always — how to

effectively and efficiently use the best multimedia authoring tool ever — Multimedia Fusion 2

by Clickteam! This tutorial is meant for intermediates, people who already spent some time with
MMF2 and experimented with various types of games and applications. Don’t jump into this one
if you've just started your journey through the fascinating world of Fusion — you can hurt your
fingers and break your toes. If you need a bit of advice on where to start, take a look at this

simple lesson guide (note that this is just a suggestion, only a slight hint on where to go):

MMF2 Interface: Interface Guide + Image Editor Guide First time with MMF2
Basics: Smelly Claw tutorial Beginners

Game tutorials: Glob Wars, Risky Waters, You’ve Got Spacemail! Beginners

Game tutorials: Mystery of Paris, Castle Defender, Space Corsair Beginner-intermediates
App tutorials: Byrd: Free Text Editor Intermediates

You are here — BiGciTY Downloader Intermediates

Next: Fusion Player Intermediates

In this tutorial we’ll create a simple, yet awfully useful, file downloader, a nifty little application
which will enable us to easily create download lists (either by adding file links manually, or by
monitoring the clipboard for specific file types) and then to effortlessly get all the listed files to
our hard drives. By doing this, we’ll learn how to use the Download, String Parser and Window
Control objects, as well as the built-in MMF2 clipboard expressions and mechanisms. This will

be quite an educative ride, so be sure to pay attention.

Download in progress...

As you may have heard, the internet is quite a spacious thing — and,
as it seems, it’s full of files, documents of different types, shapes and
sizes, just like the ocean is full of fish, jellies, and singing mammails.
And whether it's a funny picture of a squirrel just chilling in the sun, a
text file full of nerdy jokes your cousin sent ya’, or a zipped archive

containing the latest version of your favorite freeware game — I'm

pretty sure you'd like to download it to your hard drive, just to take a
look at it later on, when you’ll have a bit more time, when you’re not at /l

school/work/not writing a term paper or whatever... Bownleads

Page 2/27

Downloading files is usually as simple as it gets —
just click on a link and start downloading with your
favorite website browser (no matter whether its
Opera, Firefox, IE, Maxthon or some other gizmo
you're sporting), we've all done it before,
gabrazillions of times. But what if... Bear with me
here, what if you'd like to create a nice list of files
that you want to download later on, because
doing that right now would interrupt your plans to
conquer the world? Well then, you can always

use a downloader, a smart little program that

enables you to create lists of links that you can downloading
. .
download at the time of your choosing. There are Spencer the Skull’s Karaoke -

I believe I can fly.mp3

many free ones out there, but today we’re gonna’

Cancel

create one more: BiGciTY Downloader, a small

little app that will not only teach you a lot but also

can prove to be real handy in everyday work.

You know what we’re aiming at, you know where we want to get at the end, now it's time to

show you how to get there. Let’s not waste anymore time here! Move on!

El If you have any problems with this tutorial, or notice that there are some
mistakes present, please, contact me and I'll do my best to help you and

replace all the errors with correct information.

Contact me at: marchewkowy@gmail.com

Alternative e-mail: koobare@panzerflakes.com

El Note: I've been receiving several reports that not all e-mails get to me for some
reason. Seems that some of them (quite a lot) end up in my spambox or are
blocked out by the server. | dunno why this is happening, so if you're experiencing
any difficulties with delivering me a message or haven’t received a reply in quite some
time, please, send me another e-mail at marchewkowy@wp.pl, making sure that its

title begins with “To Koobare:”. I'll do my best to check both these e-mails regularly.

Page 3/27

El If you’re interested in all the other stuff | do, not just my tutorials, check out this
nifty little site: www.panzerflakes.com — there’s some free stuff there, wallpapers and
royalty-free resources for your games, plus you can hire the wackiest loony amongst
clicking mercenaries (yup, that would be me) to do your graphical bidding. Argh!

Part I: This one should be quick...

The title of this here part says it all: this one will be quick. As | said a bit earlier — this tutorial
isn’t meant for novices, so there won’t be any beginner-level object creation here, we’ll just
open up a file that | geared up a bit earlier and move on. So... Let’'s do that now. Open the

“BiGciTY-starter.mfa” file in MMF2, and take a look at what we’ve got there...

abort download pause download resume download maonitor clipboard 4) all file types

To manually add a new link to the link ze the field below and click on the "add ink'manually™ button

Edit object

add link manually delete selected move up

Clipboard content is copied here
Filename is copied here Filetype is copied here

Looks kinda’ nice, doesn’t it? A lot of buttons, some text here and there, a bunch of counters

and other stuff... Let’s examine them, one at a time:

Page 4/27

Object’s name:

So... What is it?

button.abort

A button for aborting your download.

WHY IT’S HERE?

A button set to Bitmap Push type (“Normal” and “Pressed” states
are present). When pushed, it aborts the current download — it’s
really as simple as that.

button.close

A button for closing our application.

WHY IT’S HERE?

We’re using the Window Shape object to change the shape of
our window and because of that there is no system “close” button
anywhere out there — this button supplies the user with the option
to close down the whole app.

button.minimize

A button for minimizing our application.

WHY IT’S HERE?

It enables our user to minimize the application, get it out of the
way of his usual day-to-day work (as was said before — the usual
system buttons are unavailable, since we're using the Window
Shape object in this app)..

button.pause

Another button, this time for pausing the download.

WHY IT’S HERE?

This button enables you to pause the current download — the
downloading process is being paused and can be resumed later
on with another button.

button.resume

A button for resuming our paused downloads.

WHY IT’S HERE?

This Bitmap Push button enables you to easily resume the
download you’ve paused earlier on.

counter.bar

A horizontal bar counter, displaying the download’s progress.

WHY IT’S HERE?

Well, we should enable our users to keep track of how much of
their files have been completely downloaded yet, right? This is
what this counter is all about — it displays the percentage of the
file that has currently found its way onto out hard drive.

SETTINGS

Initial Value is set to 0, Minimum value is set to 0, Maximum
value set to 100. Display type set to Horizontal bar, counting from
left, with a Vertical Gradient fill type (Color 1 = 250, 181, 37;
Color 2 =236, 77, 0).

Page 5/27

counter.clipboard.filetypes A hidden counter that helps us with the app’s mechanics.

This small hidden counter is pretty darn useful, it helps us control
the whole app by defining the filetype that can be found in the
clipboard... You’'ll see what it’s for later on, when we’ll get to the
coding part of this here tutorial.

counter.selected.filetypes Another hidden counter, similar to the one above.

It’s function is similar to the counter we've just looked at, so stay
tuned to learn about what it does — we’ll get to that as soon as
we get to the programming part of this tut.

SPE

| ALWAYS LIKED INDY, Y'KNOW? HE WA:"
LIKE ONE OF MY ALL-TIME HEROES, W!
HIS COOL WHIP AND FEDORA HAT... BUT

THE NEW MOVIE JUST

IT'S NOT ABOUT INDY BEING

ABOUT THE SERIOUSLY OVER-THE-TOP
ACTION SEQUENCES... IT'S ABOUT THOSE
DARN CRYSTAL SKULLS. CRYSTAL ALIEN
SKULLS! CREEPY, SCARY, STINKS.

Download Object The object that made all of this possible...

Well, this is essentially the backbone of our whole application —
this is the neat object that enables us to download files from the
web and save them at our hard drive. We'll be using this one
quite a lot once we're at the programming part.

downloads.hold A button that isn’t really a button.

And here’s a nice little active object used by me as a clickable
button — you can double click on it to open the Animation editor
and check out how it looks inside... It isn’t too impressive,
though, so feel free to just skip this and move on. When clicked,
this button resumes or pauses all downloads, enabling us to
create a download list first and start downloading a bit later on.

Page 6/27

Edit Box

helper.clipboard.content

helper.filename

helper.filetype.in.clipboard

linklist.add

linklist.delete

linklist.up

An Edit Box that enables you to input links manually.

The sentence above says it all — this is just a simple Edit Box that
can be used to add links manually to our download list — just
input the full link here (“http” included) and press the “add link
manually” button.

A string object that helps us out with our app’s mechanics.

To tell you the truth, we could have just skipped this object and
worked the whole thing around it, but — heck — I'm not here to
make things more difficult on your... or me, on that matter. So
we'll be using this little object as a helper of sorts, which will
enable us to keep the code as simple as possible.

Another string object that acts as a “helper” to our mechanics.

You'll see what | used these little guys for later on, as for now all
you gotta’ know is that this thingie helps us simplify things by
keeping the name of the file being downloaded inside.

Yet another string “helper”.

Once again, you'll see what’s this for soon enough — all | can say
now is that this one keeps the filetype extension of the file that’s
currently being downloaded (or rather that is being prepped for
download after being found in the clipboard).

A button for adding links manually.

Just press this button to copy the contents of the “Edit Box”
object into the downloads list.

Another button for controlling our linklist.

Press this button to delete the selected link from our downloads
list — it’s as simple as that.

Move the selected link one position up in the list.

Wanna’ download some links faster than the others? Just select
them and press this little button a couple of times to get them to
the top of the downloads list.

List

monitor.clipboard

monitor.filetypes

percentage.1
+ percentage.2

red.space

String Parser

A list object containing all our download links.

This object is pretty crucial for our application — this is the famous
“linklist” (also called known as the “download list”) we've spoken
of before — it contains a list of files that are about to be
downloaded by our app. We'll be back to this object as soon as
we hit the programming part of this tut.

Another active object acting as a button.

When pressed, it either enables or disables the clipboard
monitoring option of our application — when it’s enabled, the app
searches through the clipboard for the specified filetypes and
adds them to the linklist if it finds them.

Active object that is used to cycle through monitoring options.

This active object is used to determine which filetypes should be
copied from the clipboard into our downloads list — it can be set
to “all file types”, “images & videos”, “document files” and “rar &
zip archives”. It also has a “disabled” frame, with the grayed-out
“no monitoring” text right on top of it, which is displayed when the

user shuts off the clipboard monitoring function of our app.

Two strings that display the download percentage.

Just another way of telling the user exactly how far is he with
downloading that desired file of his.

A small semi-transparent active object.

I've placed it over the “downloads.hold” active-button, just to
achieve a nice “clicking” graphical effect that I've incorporated
onto all the other buttons.

A very useful object, used for... well, parsing strings.

To tell our little app which of the strings copied into the clipboard
are actually html links, pointing to a specific type of file.

Basically it works like this: when you specify a delimeter of some
sorts, the String Parser will divide a single text string into several
strings, using the delimeter as a “borderline” that tells the object
where to cut. For example: parsing a string saying “omgxxftw”
using an “xx” delimeter, will give you two separate strings in
result: “omg” and “ftw”.

text.messages

text.upper

Window Control

Window Shape

Just a string object, used for displaying program messages.

Well, this basically just tells the user about a file being
successfully downloaded, but it is also used as a “tutorial string”,
displaying some info about how to manually add links to the list.

Another string object, similar to the one above.

It says “Welcome to BiGciTY downloader. Add new lines to
download list and click on >>start downloading<<” on start, and
then goes on to displaying some useful info, such as estimated
download time and download speed.

An object that enables us to manipulate the window of our app.

This object was a bit more useful in the first version of this app,
which | scraped and built from the start after some thoughts —
right now, it is only used to minimize our application, a simple,
yet important task.

Although in this tutorial we use only the simplest and most trivial
of the actions that this object supplies us with, you should always
remember that this object can help you a lot in your own projects,
every time you need to change the size of your window, set its
position, attach it to desktop or restore its focus. Check out this
objects collection of actions, conditions and expressions — there
are lots of ways you can use the Window Control in your games
and applications.

An object that enables us to manipulate our app’s window shape.

As you've probably already guessed by looking at the screenshot
on the first page of this here tutorial, BiGciTY Downloader is one
of those apps that use their own unique window shape, instead
of relying on the usual quadrangle-shaped one. Thanks to this
object | was able to import a nice cityscape image and use it as
our window shape (just check this object’s preferences).

Please note: some of the objects use alpha channels, a feature that is

unavailable in Games Factory 2 — If you’re a TGF2 user, you might need to

use your own objects instead (I would also advise you to upgrade to MMF2).

Page 9/27

Part lI: Coding.

As it was written in the ancient scripts, this tutorial is pretty straightforward, so we’re not gonna’
waste any more time on pointless details and other chit-chat. Open up the Event Editor. You
all know my event-scripting system, dontcha’? If you need me to refresh your memory, take a

look at this:

Koobare’s MMF-to-paper coding system

IF (Condition): [Object for the condition] >> Condition group >> Condition

THEN (Action): [Object for the action] >> Action group >> Action

Conditions are red, actions are written in blue. Object names are put in [square

brackets]. If we’ll have a multi-condition event, then it'll be like this:

IF (Condition 1): [Object for condition 1] >> Condition group 1 >> Condition 1
IF (Condition 2): [Object for condition 2] >> Condition group 2 >> Condition 2
THEN (Action): [Object for the action] >> Action group >> Action

Whereas a multi-action event looks like this:

IF (Condition): [Object for condition] >> Condition group >> Condition
THEN (Action 1): [Object for the action 1] >> Action group 1 >> Action 1
THEN (Action 2): [Object for the action 2] >> Action group 2 >> Action 2

Any additional comments, instructions and info (including everything you have to

input by keyboard) will be put in << double angle brackets >>, like this:

<< Select any wave sound from the MMF2’s sound library >>

From time to time I'll also use this style to throw in some extra tips and tricks
about MMF2 and more advanced coding techniques. All you have to do is to go
step-by-step through all the listed events and keep one eye on your Event Editor,

and the second one on this tutorial...

Page 10/27

Come on, let’s get this show on the road!

1) Firstly, let’s start off with the event | usually create at the very beginning of each tutorial’s
programming part — the “Start of frame” one... This one will be as simple as they get, as all it

does is clearing the clipboard:

IF: [Storyboard Controls] >> Start of frame
THEN: [Special Object] >> Clipboard >> Clear clipboard

2) The second one will be a bit longer, but still easy to follow and pretty much self-explanatory.
All we do here is make sure that the strings display correct information and that all of our

buttons are currently displaying the right animation:

IF: [Special Object] >> Always

THEN: [percentage.2] >> Change alterable string

<< input: Str$(CurrentPercent("Download object”, 1))+"%" >>
THEN: [percentage.1] >> Change alterable string
<<input: string$("percentage.2") >>

THEN: [monitor.clipboard] >> Alterable value >> Set
<< Set Clicked to 0 >>

THEN: [monitor.filetypes] >> Alterable value >> Set
<< Set Clicked to 0 >>

THEN: [downloads.hold] >> Alterable value >> Set
<< Set Clicked to 0 >>

Got it? Great! Now it’s time to create all the groups we’re gonna’ need in this frame... Take a

look at this here screenshot to learn what has to be created where...

Allthe events

All the objects £oMbnBh

B e

i
t
[l
[
[

& == ———

1 | » Start of Frame

2 | = Always

vvv

<
<

3 | Window controls

¢ | Download controls

5 Downloading

6 | Hold and resume downloads
7 . Monitor clipboard

8 Linklist controls

Page 11/27

3) ...and let’s create those groups right now. Create 6 primary event groups and name them
respectively: Window controls, Download controls, Downloading, Hold and resume
downloads, Monitor clipboard and Linklist controls. Make sure that they are all set to active
when the frame starts. Once that’'s done, create two additional groups inside the Monitor

clipboard group — name them Controls and Files in clipboard. Got it? Then let's move on...

4) Open up the Window controls group and create these two events inside, one after the

other... These two thingies basically control the minimize and close functions of our app:

IF: [button.minimize] >> Button clicked?

THEN: [Window Control] >> Resize >> Minimize Window

Here'’s the second event... Note that we don’t have to destroy all these objects before shutting
down our app — but it can be useful if you want to create a nice fade out transition effect for this

app (since buttons and some system objects won’t fade into black, they’'ll just stay solid):

IF: [button.close] >> Button clicked?

THEN: [button.close] >> Destroy

THEN: [button.minimize] >> Destroy

THEN: [linklist.add] >> Destroy

THEN: [button.abort] >> Destroy

THEN: [button.pause] >> Destroy

THEN: [button.resume] >> Destroy

THEN: [Edit Box] >> Destroy

THEN: [List] >> Destroy

THEN: [monitor.clipboard] >> Destroy
THEN: [monitor.filetypes] >> Destroy

THEN: [downloads.hold] >> Destroy

THEN: [text.messages] >> Destroy

THEN: [text.upper] >> Destroy

THEN: [percentage.2] >> Destroy

THEN: [percentage.1] >> Destroy

THEN: [red.space] >> Destroy

THEN: [linklist.delete] >> Destroy

THEN: [linklist.up] >> Destroy

THEN: [helper.clipboard.content] >> Destroy
THEN: [helper.filetype.in.clipboard] >> Destroy
THEN: [helper.filename] >> Destroy

THEN: [Storyboard Controls] >> End the application

Page 12/27

And here’s what we’ve got so far:

All the objects

Allthe events @(}L@ [J%@j@ww@@@@wagﬁ—mn

1 | e StartofFrame Y 4

2 | = Always
3 | Window controls
4 | « Button (&]|(button.minimize) clicked w
5 | » Button (& (bution.close) clicked V; W V V v V V’ V’ ¢ W v
6 | = New condition
Download controls
Downloading
Hold and resume downloads
0| Monitor clipboard
11| Controls
12| Files in clipboard

13 | « New condition I

=~

o

w

e

14| Linklist controls

5) Now, move on to the next event group — the one named Download controls. Create this

event inside, to enable our users to control the download’s progress:

IF: [Download Object] >> Download in progress?

<< input 17 to select slot 1 >>

THEN: [counter.bar] >> Set Counter

<<input: CurrentPercent("Download object”, 1) >>

THEN: [text.upper] >> Change alterable string

<< input: "Speed: "+Str$(CurrentSpeed("Download object", 1))+" / Estimated download

time: "+Str$(TotalTime("Download object”, 1))+" sec." >>

6) Once that’s done, create these three events inside the same group... These will enable the

user to pause, resume and abort the download:

IF: [button.pause] >> Button clicked?

THEN: [Download Object] >> Pause download
<< input 7 to select slot 1 >>

THEN: [button.pause] >> Disable

THEN: [button.resume] >> Enable

6 | » Button (=1 (button pause) clicked vV v
7 | * Button (button resume) clicked v W v
8 | » Button (=] (button.abort) clicked v)

Page 13/27

IF: [button.resume] >> Button clicked?

THEN: [Download Object] >> Resume download
<< input 7 to select slot 1 >>

THEN: [button.resume] >> Disable

THEN: [button.pause] >> Enable

IF: [button.abort] >> Button clicked?
THEN: [Download Object] >> Abort download

<< input 7 to select slot 1 >>

7) Now, close up the Download controls group and enter the next one — the one with the oh,

so intricate name: Downloading. The events we’re going to create inside this group are a bit

more tricky and complex than those we’ve made before, in the previous two event groups, but —

no worries — when you’ll create them one by one, it'll all make perfect sense.

So...

IF: [Special Object] >> Compare to a global value

<< Choose value Hold downloads >>

<< compare if it equals 0 >>

[NEGATE] IF: [Download Object] >> Download in progress?

<< input 17 to select slot 1 >>

IF: [Special Object] >> Limit conditions >> Only one action when event loops
THEN: [String Parser] >> Set source string

<<input: List Line Text$("List", 1) >>

THEN: [String Parser] >> List tokenizing >> Delimiters >> Add delimiter
<<input: /" >>

THEN: [String Parser] >> List tokenizing >> Delimiters >> Delete delimiter
<<input: "." >>

THEN: [Download Object] >> Download file

<<input ListLine Text$("List", 1) as the URL >>

<< Set the destination file via expression editor to listLast$("String Parser") >>
<< input 17 to select slot 1 >>

THEN: [List] >> Delete line

<<input: 1 >>

How does it work? Look at it closely: the app checks whether the downloading process is

on hold or not — if not (and nothing is downloaded at the moment), it splits the file’s URL with

the help of the String Parser (using the “/” delimeter) to get the file’s name (for example:

duck.jpg or panzerflakes-com-rules.zip), adds a new download task from the list, deletes the

link from the list and saves the file to the correctly named file. Pretty simple, right?

Page 14/27

8) And here’s the next event, which goes into the same event group (Downloading). This one

will download the next file from the list once the first one is finished downloading:

IF: [Download Object] >> Download successfully completed?

<< input 71 to select slot 1 >>

IF: [Special Object] >> Limit conditions >> Only one action when event loops
[NEGATE] IF: [Download Object] >> Download in progress?

<< input 17 to select slot 1 >>

IF: [Special Object] >> Compare to a global value

<< Choose value Hold downloads >>

<< compare if it equals 0 >>

IF: [Special Object] >> Compare two general values

<< check if List Nb Lines("List") is greater or equals 1 >>

THEN: [Download Object] >> Download file

<<input ListLine Text$("List", 1) as the URL >>

<< Set the destination file via expression editor to listLast$("String Parser") >>
<< input 17 to select slot 1 >>

THEN: [List] >> Delete line

<<input: 1 >>

THEN: [String Parser] >> Set source string

<<input: List Line Text$("List", 1) >>

THEN: [String Parser] >> List tokenizing >> Delimiters >> Add delimiter
<< input: "/" >>

THEN: [String Parser] >> List tokenizing >> Delimiters >> Delete delimiter

<< input: "." >>

9) Another event that should be created inside the Downloading group. This one let’s the user

know that a file has been downloaded, both with a sound and a text message:

IF: [Download Object] >> Download successfully completed?

<< input 17 to select slot 1 >>

IF: [Special Object] >> Limit conditions >> Only one action when event loops
THEN: [Sound Object] >> Samples >> Play sample

<< Choose some kind of a short clicking sound from MMF2’s libraries >>
THEN: [text.messages] >> Change alterable string

<< input: "File successfully downloaded!" >>

10) Once that’'s done, close up the current group and move on to the next one: Hold and

resume downloads. Create this event inside:

Page 15/27

IF: [Keyboard & Mouse Object] >> The Mouse >> User clicks on an object
<< select: left button, single click >>

<< choose the [downloads.hold] object >>

IF: [Special Object] >> Compare to a global value

<< check if Hold downloads equals 1 >>

IF: [downloads.hold] >> Alterable Values >> Compare to one of the alterable values
<< check if Clicked equals 0 >>

IF: [Special Object] >> Compare two general values

<< check if expression List Nb Lines("List") is greater than 0 >>
THEN: [Special Object] >> Change a global value >> Set

<< Choose value Hold downloads >>

<< input: 0 >>

THEN: [Download Object] >> Resume download

<< input 71 to select slot 1 >>

THEN: [downloads.hold] >> Animation >> Change >> Animation Sequence
<< select Stopped >>

THEN: [button.pause] >> Enable

THEN: [button.resume] >> Disable

THEN: [downloads.hold] >> Alterable value >> Set

<< Set Clicked to 1 >>

Here’s a small screenshot of this event (note that | use custom colors and “check” icons):

® User GRoks W IET bumon on === (COWNS0SCE. POiC)
+ Hold downloats = 1

7|+ Ciicied of —| fawmicacs.nokd) - 0
+ Lsthtlnes(” = Lsgy=0

11) Got it? Then it's time for the next one, just below the previous one (inside the same group):

IF: [Keyboard & Mouse Object] >> The Mouse >> User clicks on an object
<< select: left button, single click >>

<< choose the [downloads.hold] object >>

IF: [Special Object] >> Compare to a global value

<< check if Hold downloads equals 0 >>

IF: [downloads.hold] >> Alterable Values >> Compare to one of the alterable values
<< check if Clicked equals 0 >>

THEN: [Special Object] >> Change a global value >> Set

<< Choose value Hold downloads >>

<<input: 1>>

THEN: [Download Object] >> Pause download

<< input 17 to select slot 1 >>

Page 16/27

THEN: [downloads.hold] >> Animation >> Change >> Animation Sequence
<< select Resume downloads >>

THEN: [button.pause] >> Disable

THEN: [button.resume] >> Enable

THEN: [downloads.hold] >> Alterable value >> Set

<< Set Clicked to 1 >>

12) Here’s a shorter event for ya’, be sure to put it in the same group as the two previous ones

(the Hold and resume downloads group):

IF: [Special Object] >> Compare two general values

<< check if expression List Nb Lines("List") equals 0 >>

THEN: [Special Object] >> Change a global value >> Set

<< Choose value Hold downloads >>

<< input: 1>>

THEN: [downloads.hold] >> Animation >> Change >> Animation Sequence

<< select Resume downloads >>

13) Here we go with another one... Once again: create this inside the same group...

IF: [Keyboard & Mouse Object] >> The Mouse >> User clicks on an object
<< select: left button, single click >>

<< choose the [downloads.hold] object >>

THEN: [red.space] >> Visibility >> Make Object Reappear

THEN: [red.space] >> Animation >> Change >> Animation Sequence

<< select Blink >>

14) And here’s the last event from the Hold and resume downloads group:

IF: [red.space]>> Animation >> Has an animation finished?
<< select Blink >>
THEN: [red.space] >> Visibility >> Make Object Invisible

< <

v vV v/
v

v
v

So... Four groups done, two to go (even though one of them is quite massive, divided into two

separate subgroups). Don’t waste any time, let's move on!

Page 17/27

15) Open up the Controls subgroup, located inside the Monitor Clipboard group and create

all of these events inside:

IF: [Keyboard & Mouse Object] >> The Mouse >> User clicks on an object
<< select: left button, single click >>

<< choose the [monitor.clipboard] object >>

IF: [Special Object] >> Compare to a global value

<< check if Monitor clipboard equals 0 >>

IF: [monitor.clipboard] >> Alterable Values >> Compare to one of the alterable values
<< check if Clicked equals 0 >>

THEN: [monitor.clipboard] >> Alterable value >> Set

<< Set Clicked to 1 >>

THEN: [monitor.clipboard] >> Animation >> Change >> Animation Sequence
<< select Stopped >>

THEN: [Special Object] >> Change a global value >> Set

<< Choose value Monitor clipboard >>

<< input: 1>>

THEN: [counter.selected.filetypes] >> Set Counter

<< input: 1 >>

THEN: [Special Object] >> Group of events>> Activate

<< Select the Files in clipboard group >>

This one is pretty similar to the one above... But keep track of all those differences:

IF: [Keyboard & Mouse Object] >> The Mouse >> User clicks on an object
<< select: left button, single click >>

<< choose the [monitor.clipboard] object >>

IF: [Special Object] >> Compare to a global value

<< check if Monitor clipboard equals 1 >>

IF: [monitor.clipboard] >> Alterable Values >> Compare to one of the alterable values
<< check if Clicked equals 0 >>

THEN: [monitor.clipboard] >> Alterable value >> Set

<< Set Clicked to 1>>

THEN: [monitor.clipboard] >> Animation >> Change >> Animation Sequence
<< select Don’t monitor >>

THEN: [Special Object] >> Change a global value >> Set

<< Choose value Monitor clipboard >>

<<input: 0 >>

THEN: [monitor.filetypes] >> Animation >> Change >> Animation Sequence

<< select No monitoring >>

Page 18/27

THEN: [counter.selected.filetypes] >> Set Counter
<< input: 0 >>
THEN: [Special Object] >> Group of events>> Deactivate

<< Select the Files in clipboard group >>

Time for the third event in this group:

IF: [Keyboard & Mouse Object] >> The Mouse >> User clicks on an object
<< select: left button, single click >>

<< choose the [monitor.filetypes] object >>

IF: [Special Object] >> Compare to a global value

<< check if Monitor clipboard equals 1 >>

IF: [counter.selected.filetypes] >> Compare the counter to a value

<< check if it's Lower or equal 4 >>

IF: [monitor.clipboard] >> Alterable Values >> Compare to one of the alterable values
<< check if Clicked equals 0 >>

THEN: [Special Object] >> Change a global value >> Set

<< Choose value Monitor clipboard >>

<<input: 1>>

THEN: [monitor.filetypes] >> Alterable value >> Set

<< Set Clicked to 1 >>

THEN: [counter.selected.filetypes] >> Add to Counter

<< input: 1>>

And here’s the fourth one...

IF: [Keyboard & Mouse Object] >> The Mouse >> User clicks on an object
<< select: left button, single click >>

<< choose the [monitor.filetypes] object >>

IF: [Special Object] >> Compare to a global value

<< check if Monitor clipboard equals 1 >>

IF: [counter.selected.filetypes] >> Compare the counter to a value

<< check if it's Equal 5 >>

IF: [monitor.clipboard] >> Alterable Values >> Compare to one of the alterable values
<< check if Clicked equals 0 >>

THEN: [Special Object] >> Change a global value >> Set

<< Choose value Monitor clipboard >>

<<input: 1>>

THEN: [monitor.filetypes] >> Alterable value >> Set

<< Set Clicked to 1 >>

Page 19/27

THEN: [counter.selected.filetypes] >> Set Counter

<< input: 1 >>

Here are four more... But don’t worry, these are pretty short and straightforward:

IF: [counter.selected.filetypes] >> Compare the counter to a value

<< check if it's Equal 1 >>

IF: [Special Object] >> Limit conditions >> Only one action when event loops
THEN: [monitor.filetypes] >> Animation >> Change >> Animation Sequence

<< select Stopped >>

IF: [counter.selected.filetypes] >> Compare the counter to a value

<< check if it's Equal 2 >>

IF: [Special Object] >> Limit conditions >> Only one action when event loops
THEN: [monitor.filetypes] >> Animation >> Change >> Animation Sequence

<< select Images & Videos >>

IF: [counter.selected.filetypes] >> Compare the counter to a value

<< check if it's Equal 3 >>

IF: [Special Object] >> Limit conditions >> Only one action when event loops
THEN: [monitor.filetypes] >> Animation >> Change >> Animation Sequence

<< select Documents >>

IF: [counter.selected.filetypes] >> Compare the counter to a value

<< check if it's Equal 4 >>

IF: [Special Object] >> Limit conditions >> Only one action when event loops
THEN: [monitor.filetypes] >> Animation >> Change >> Animation Sequence

<< select Archives >>

16) We’re almost at the end, so keep your trousers on and don’t run away. Close up the

Controls subgroup and open up the next one: Files in clipboard. Create these event inside:

IF: [Special Object] >> Compare to a global value

<< check if Monitor clipboard equals 1 >>

THEN: [String Parser] >> Set source string

<<input: ClipText$ >>

THEN: [String Parser] >> List tokenizing >> Delimiters >> Add delimiter
<< input: "/" >>

THEN: [String Parser] >> List tokenizing >> Delimiters >> Delete delimiter

<<input: "." >>

Page 20/27

THEN: [helper.filename] >> Change alterable string

<<input: listLast$("String Parser") >>

THEN: [String Parser] >> Set source string

<<input: string$("helper.filename") >>

THEN: [String Parser] >> List tokenizing >> Delimiters >> Add delimiter
<<input: "." >>

THEN: [String Parser] >> List tokenizing >> Delimiters >> Delete delimiter
<<input: "/" >>

THEN: [helper.filetype.in.clipboard] >> Change alterable string
<<input: listLast$("String Parser") >>

THEN: [helper.clipboard.content] >> Change alterable string

<< input: ClipText$ >>

IF: [Special Object] >> Always
THEN: [counter.clipboard.filetypes] >> Set Counter

<< input: 0 >>

17) Below you’ll find even more events that should be placed inside the same group (and
subgroup) — these thingies help us to determine the type of file that is currently stored inside
our clipboard. Note that I've used the filtered OR operator between some of these conditions to
simplify our code a bit. You can add OR operator between condition lines by right-clicking on
them and choosing the operator from the drop-down list. Anyways, create these events inside

Files in clipboard, one under the other:

IF: [Special Object] >> Compare two general values

<< check if expression string$("helper.filetype.in.clipboard") equals “jpg” >>
[OR]

IF: [Special Object] >> Compare two general values

<< check if expression string$("helper.filetype.in.clipboard") equals “jpeg” >>
[OR]

IF: [Special Object] >> Compare two general values

<< check if expression string$("helper.filetype.in.clipboard") equals “gif”’ >>
[OR]

IF: [Special Object] >> Compare two general values

<< check if expression string$("helper.filetype.in.clipboard") equals “bmp” >>
[OR]

IF: [Special Object] >> Compare two general values

<< check if expression string$("helper.filetype.in.clipboard") equals “png” >>
THEN: [counter.clipboard.filetypes] >> Set Counter

<< input: 1>>

Page 21/27

IF: [Special Object] >> Compare two general values

<< check if expression string$("helper.filetype.in.clipboard") equals “avi”’ >>
[OR]

IF: [Special Object] >> Compare two general values

<< check if expression string$("helper.filetype.in.clipboard") equals “mpg” >>
[OR]

IF: [Special Object] >> Compare two general values

<< check if expression string$("helper.filetype.in.clipboard") equals “mpeg” >>
[OR]

IF: [Special Object] >> Compare two general values

<< check if expression string$("helper.filetype.in.clipboard") equals “wmv” >>
[OR]

IF: [Special Object] >> Compare two general values

<< check if expression string$("helper.filetype.in.clipboard") equals “flv” >>
THEN: [counter.clipboard.filetypes] >> Set Counter

<< input: 2 >>

And here are the most popular office documents extensions...

IF: [Special Object] >> Compare two general values

<< check if expression string$("helper.filetype.in.clipboard") equals “doc” >>
[OR]

IF: [Special Object] >> Compare two general values

<< check if expression string$("helper.filetype.in.clipboard") equals “txt” >>
[OR]

IF: [Special Object] >> Compare two general values

<< check if expression string$("helper.filetype.in.clipboard") equals “rtf” >>
[OR]

IF: [Special Object] >> Compare two general values

<< check if expression string$("helper.filetype.in.clipboard") equals “pdf” >>
[OR]

IF: [Special Object] >> Compare two general values

<< check if expression string$("helper.filetype.in.clipboard") equals “docx” >>
THEN: [counter.clipboard.filetypes] >> Set Counter

<< input: 3 >>

So, when the “counter.clipboard.filetypes” counter is set to a value of 1, it means that our
“helper filetype.in.clipboard” object contains a link to an image. Value of 2 means that it’s linking
to a video file, whereas a value of 3 indicates that the given link points toward a document of
some sorts, either a doc, txt, rtf, pdf or docx file. Oh, and we shouldn’t forget about archives:

Page 22/27

IF: [Special Object] >> Compare two general values

<< check if expression string$("helper.filetype.in.clipboard") equals “rar” >>
[OR]

IF: [Special Object] >> Compare two general values

<< check if expression string$("helper.filetype.in.clipboard") equals “zip” >>
THEN: [counter.clipboard.filetypes] >> Set Counter

<<input: 4 >>

Note that I've used the filtered OR operator, not the “logical” one.

i BALS FE O == e ww = = e 7 Al G e e e s wa =

e StringS{ " g, (helper filetype in clipboard)”
)} ="doc”
OR

& StringS{ " EBg (helper filetype in clipboard)”
b=ttt
OR

1| StringS(" Ebc, (helper.filetype.in. clipboard)” w

y="rtr
OR

& SiringS(" Ebc, (helper filetype.in.clipboard)”
}="pdf"
OR

& StringS(" Ebc, (helper.filetype.in.clipboard)”
} = "docx”

& SiringS(" Ebe, (helper filetype.in.clipboard)”
)= "rar"

15| OR [¥ 4

& StringS(" Ebc, (helper.filetype.in.clipboard)”
}="zig"

18) These four events should be created in the same subgroup as the ones above (inside the

Files in clipboard group):

IF: [counter.selected.filetypes] >> Compare the counter to a value
<< check if it's Equal 1 >>

IF: [counter.clipboard.filetypes] >> Compare the counter to a value
<< check if it's Greater or equal 1 >>

IF: [Special Object] >> Compare to a global string

<< Choose string Clipboard history >>

<< check if it is Different than string$("helper.clipboard.content”) >>
IF: [Special Object] >> Compare to a global value

<< check if Monitor clipboard equals 1 >>

THEN: [List] >> Add a line

<<input: string$("helper.clipboard.content") >>

THEN: [Special Object] >> Set global string

<< Select the “Clipboard history” Global String >>

<<input: string$("helper.clipboard.content") >>

IF: [counter.selected.filetypes] >> Compare the counter to a value

<< check if it's Equal 2 >>

Page 23/27

IF: [counter.clipboard.filetypes] >> Compare the counter to a value
<< check if it's Greater or equal 1 >>

IF: [counter.clipboard.filetypes] >> Compare the counter to a value
<< check if it's Lower or equal 2 >>

IF: [Special Object] >> Compare to a global string

<< Choose string Clipboard history >>

<< check if it is Different than string$("helper.clipboard.content”) >>
IF: [Special Object] >> Compare to a global value

<< check if Monitor clipboard equals 1 >>

THEN: [List] >> Add a line

<< input: string$("helper.clipboard.content") >>

THEN: [Special Object] >> Set global string

<< Select the “Clipboard history” Global String >>

<<input: string$("helper.clipboard.content") >>

Here’s a quick look at how these two events look in my MMF2:

* DR {counter sslected fistypas) = 1

+ mEm| (counter.clipboard. filetypes) >= 1
® | v v
+ Clipboard histery < string${ " 5

(helper ciipboard.contenty’)
+ Monitor Clipboard = 1

o (counter sslected. fetypes) = 2
+ D] fcounter.cipboard fistypas) = 1
+7 | ¢ R (counterclipbaard fietypes) == 2 J v
+ Cliphoard history <> string${ " |

(helper.clipboard.content)’]
+ Monitor clipboard = 1

Remember that they don’t have to look identical in yours: graphical nuances aside, it's not

guaranteed that your object columns are set in the same sequence as they are in my editor.

IF: [counter.selected.filetypes] >> Compare the counter to a value
<< check if it's Equal 3 >>

IF: [counter.clipboard.filetypes] >> Compare the counter to a value
<< check if it's Equal 3 >>

IF: [Special Object] >> Compare to a global string

<< Choose string Clipboard history >>

<< check if it is Different than string$("helper.clipboard.content”) >>
IF: [Special Object] >> Compare to a global value

<< check if Monitor clipboard equals 1 >>

THEN: [List] >> Add a line

<<input: string$("helper.clipboard.content") >>

THEN: [Special Object] >> Set global string

<< Select the “Clipboard history” Global String >>

<<input: string$("helper.clipboard.content") >>

Page 24/27

IF: [counter.selected.filetypes] >> Compare the counter to a value
<< check if it's Equal 4 >>

IF: [counter.clipboard.filetypes] >> Compare the counter to a value
<< check if it's Greater or equal 4 >>

IF: [Special Object] >> Compare to a global string

<< Choose string Clipboard history >>

<< check if it is Different than string$("helper.clipboard.content”) >>
IF: [Special Object] >> Compare to a global value

<< check if Monitor clipboard equals 1 >>

THEN: [List] >> Add a line

<< input: string$("helper.clipboard.content") >>

THEN: [Special Object] >> Set global string

<< Select the “Clipboard history” Global String >>

<<input: string$("helper.clipboard.content") >>

19) Close the Files in clipboard subgroup, close up Monitor clipboard, and move on to the

Linklist controls events group. Three events to go...

IF: [linklist.add] >> Button clicked?

IF: [Special Object] >> Compare two general values

<< check if expression Left$(Edittext$("Edit Box"), 7) equals "http:/" >>
THEN: [List] >> Add a line

<< input: Edittext$("Edit Box") >>

THEN: [Edit Box] >> Editing >> Set text

11244

<< input: - yup, that means we want to set it to no text >>
IF: [linklist.delete] >> Button clicked?
THEN: [List] >> Delete line

<<input: List Select("List") >>

IF: [linklist.up] >> Button clicked?

IF: [Special Object] >> Compare two general values

<< check if expression List Nb Lines("List") is greater than 1 >>
IF: [Special Object] >> Compare two general values

<< check if expression List Select("List") is greater than 1 >>
THEN: [Special Object] >> Set global string

<< Select the “Swapped line” Global String >>

<<input: List Line Text$("List", 1) >>

THEN: [List] >> Delete line

<<input: 1 >>

Page 25/27

THEN: [List] >> Insert a line

<< insert after line 7 >>

<<input: List Select$("List") >>
THEN: [List] >> Delete line
<<input: List Select("List") >>
THEN: [List] >> Add a line

<< input: Swapped line >>
Aaaaand... That’s it! You’ve done it! Congratulations!

And just like that... We’re done! You've just created your own file downloader, ready to
download your share of images, videos, documents and archives of the internet! There’s still
much to do, if you'd like to polish this app into something really, really useful — you can make
the whole app a bit more automated, you can add new features, new filetype filters and some
functional keyboard shortcuts — but as far as this tut is concerned, we’re at the finish line! Play
a bit with this app to learn new tricks on your own... And see ya’ later, in another one of my

tutorials. Drop me a word or two if you like ‘em!
Thanks for your time and see you again soon!

Cheers!

If you have any questions, suggestions or just need help —

mail me at marchewkowy@gmail.com
oh, and remember to check out

www.panzerflakes.com

Something | can help you with? I’'m for hire! If you need any graphics, animations, illustrations,

anything | can help you with — just contact me and we’ll see what we can do about it.

Page 26/27

“appbuilders” series

You have been reading...

Created for Multimedia Fusion 2 & Multimedia Fusion 2: Developer

Always be sure to have your MMF2 up-to-date!

Page 27/27

