
 

 

 

 

 

Making a CD-ROM interface with Multimedia Fusion 2 



 

 

 

Table of contents 

Table of contents ..................................................................................2 

Welcome ............................................................................................2 

What we want on our CD-ROM interface menu...............................................3 

Inserting graphics and text.......................................................................3 

Interactive buttons ................................................................................4 

Button settings .....................................................................................6 

Making the button do something................................................................7 

Adding sounds ......................................................................................9 

Making more buttons............................................................................ 11 

Finalizing the CD-ROM window................................................................ 11 

Making an autorun file .......................................................................... 12 

That was it ........................................................................................ 12 

 

Welcome 

Welcome to the tutorial, explaining how to make a simple CD-ROM interface application. 

With Multimedia Fusion 2 you can with little knowledge about other development 

software, create personal or professional CD-ROM’s with your very own content. You can 

add graphics, sounds and music after your own choice. Make cool welcome screens for 

your school projects; make a well-arranged CD browser for your CD compilations or just 

a simple autorun menu to start your game made in Multimedia Fusion 2. 

Making a CD-ROM interface with Multimedia Fusion 2 



What we want on our CD-ROM interface menu 

In this first chapter, we will focus on creating a simple menu with simple effects. 

We can start out planning what we want to make: 

• A headline for the application 

• Three or four clickable buttons 

• Mouse-over effect on the buttons 

• Sounds when the buttons are clicked 

• The buttons executes programs from the CD 

Other tasks: 

• Making an autorun file so your application automatically starts 

Inserting graphics and text 

Multimedia Fusion 2 makes it straight forward to simply begin inserting everything we 

need. For our application we need a nice background. You can browse the Multimedia 

Fusion 2 libraries for nice backgrounds or you can search the internet for some. 

Here I found an existing background from the MMF2 library and dragged it into the 

frame.  

 

After you dropped it on the frame, you can 

resize it and drag it so it fits to the size of 

the window. We now have a nice 

background for our menu. 

 

Now we will use the ‘String Object’. It 

makes it easy to display some simple text 

on your frame. 

 



By default it uses a small and black text size, but for our menu we want something 

bigger and something that fits better with the colours of the background. 

 

Here is an example on what the text we insert for example could be: 

 

 

 

 

 

You can easily add more string objects and give them different sizes and colours. 

 

Interactive buttons 

Next thing we insert is buttons. For the buttons we will in this example use an object 

called “Active System Box” as it has some features that makes our work faster and 

easier to do.  

In this example we want it to: 

• Be a menu item that we can click on 

• Display some text of our choice 

• Show a border when our mouse hovers over it. 

•  

The Active System Box has a lot of other useful (but more advanced) features that we 

won’t focus on in this tutorial. 

Click ‘Insert new object’, find the object and click OK. 

You will notice that there is also a ‘Background System Box’, 

but it doesn’t have all the same features as the ‘Active’ 

version of it. For example it doesn’t have inbuilt features to 

make it act like a clickable button which is what we want. 

Click on the String Object to get access to it’s settings in 

the Properties toolbar. Then click on the ‘A’ tab to see 

the settings for Font, Style and Colour. The headline 

“Personal CD-ROM menu” uses the settings displayed on 

the left. 



You will now be shown the Active System Box’s setup dialog, which will look something 

like the picture to the right. By default the 

box will be rather boring to look at, its fill 

colour is grey and borders are also boring 

shades of grey. We want to spice it up a 

little. If we want to use a background 

image for the button, we click the ‘Edit’ 

button, close to the top right corner of the 

dialog. You can then either draw a 

background image there or you can paste 

in another image you created in another 

drawing application. 

 

In this tutorial, the following image is used for the button: 

 

 

If you don’t want an image as a background you can simply use a colour by clicking on 

the box next to the ‘Fill colour’ drop-down box and select a colour in the colour selector 

that will pop up. 



 

Borders 

For the borders we click the small buttons 

and select a pure white colour for them 

both. In the colour dialog that pops up we 

click a white colour and click ok. 

 

Text 

We want our button to tell us which 

program it will open. But until we have 

decided which program it should open, we 

use the text ‘Button 1’ as a placeholder. 

Click on the ‘…’ Button at the Font box 

setting to set the font and size. For the 

text colour we’ll use white. The rest of the 

font settings aren’t important at this point. 

 

Button settings 

The most important thing for our own custom button is that it 

can be clicked. At the button settings we check the ‘Button 

style’ checkbox so it looks like the picture. Now our object 

will display our text on our background image/colour and 

display a white border around the button when the mouse 

hovers over it. We could also check the ‘Always show border’ checkbox if we always 

want the borders to be displayed but in this example we want the white borders as a 

mouse-over effect only. 

 

Now click OK to go back to the frame editor. You can now 

resize the button so it has a reasonable size. If you used a 

background image for the button and want your button to 

have the same size, you can either resize the object with 

the mouse or use the properties toolbar for more 

precision. 



Making the button do something 

So far our button is purely visual though it 

gives a ‘clicked’ effect if you click on it at 

runtime + you get a mouse-over effect. You 

can try to run the application and test it. 

Now we need to tell Multimedia Fusion 2 

what we want our application to do if we 

click the button. Switch to the event editor 

and click on the ‘New condition’ line. 

 

 

In the ‘New Condition’ dialog, you right click 

the icon for your Active System Box. At the 

button subgroup you select the ‘Is clicked?’ 

condition. 

Now we have told MMF2 that we want to 

know when the button is clicked and we can 

now begin to add some functionality into our 

program. 

 

 

Say you want to burn a CD-ROM with a program called “Setup.exe” on it and you want 

our application to run that application as soon as the user clicked the button. 

In the event that appeared after you created the condition, we now wish use a feature 

of the ‘Special object’ (the very first object you see listed at the top of the event 

editor) called “Execute an external program -> with an evaluated pathname” 



MMF2 will now show you the Expression Evaluator dialog. 

 

Here you should enter the path to the program you want to launch. It would be easy to 

enter “D:\Setup.exe” assuming that the D:\ drive is the user’s CD-ROM drive but that is 

not always the cause! Many people have extra hard drives in their computer and their 

CD-ROM drive would then be E:\ or G:\. 

So to make MMF2 know the correct path to the application you want to execute we can 

assume that the application is on the exact same drive letter as our own CD-ROM 

interface application. We then use an inbuilt expression from MMF2 to get this drive 

letter. Click ‘Retrieve data from an object’ to open this dialog: 

From the ‘Special Object’ we can get the 

current drive letter by selecting “Application 

drive name”. This will be shown in the 

expression editor as Appdrive$. 

So the final expression to load the ‘Setup.exe’ 

application looks like this: 

 

 

No matter which CD-ROM drive we put our CD 

into, MMF2 will use the correct pathname. 

For example if you run our application from 

drive D:\, MMF2 would see our expression as 

“D:\Setup.exe” and as “E:\Setup.exe” if ran from drive E:\. 

MMF2 also asks for a ‘Command line’ but we can skip it in this tutorial. Finally MMF2 also 

asks you if it should ‘Wait’ for the Setup.exe application to finish. This means that the 

Appdrive$ + “Setup.exe” 



application will be paused until the executed application has finished running. The 

‘Hide’ option means that your application will hide itself until the executed application 

has finished running. 

 

Our event as it looks from the event editor: 

 

As it looks from the event list editor: 

 

Adding sounds 

We could leave the menu as it is now but that would be a bit 

boring. We want a sound when the mouse moves over the button. 

We then once more click ‘New condition’ at the bottom of the 

event list. Right click the Active System Box’s icon and select 

‘Mouse is over object’ from the bottom of the popup menu.  

We can then in the new event insert an action to play a sample 

from the MMF2 library or one of your own sounds. I won’t go into 

much detail here as it is described in the help files how to play a 

simple wave sample. 

 

There is one problem with this event though. If you run your application and moves the 

mouse over the button, the sound will play continuously and messy. Why? Since ‘Mouse 

is over object’ is true all the time, the sample will be played all the time. We only want 

the sound to play once per time the mouse moves over a button, so we now have to 



insert an additional condition into the same event. This may sound complex but is quite 

simple: 

Right click on the first condition as shown on 

the image and then select ‘Insert’. You will be 

shown the ‘New condition’ dialog as if you 

were about to create a new event, but this 

time it will insert the new condition into the 

same event as the ‘Mouse is over’ condition. 

When you see the ‘New Condition’ dialog you 

(again) right click the ‘Special object’ and select 

‘Only one action when event loops’ from the 

‘Limit conditions’ subgroup. 

Now “drag” this condition to the bottom of your 

event so it looks like the image below. 

 

 

 

 

This special condition makes MMF ignore your event if the event was ‘true’ the moment 

just before. Note that not all conditions always are true. Other conditions (for example 

collision conditions) will only tell MMF2 that two objects collided once even though they 

are still overlapping each other. The condition called ‘Object is overlapping another 

object’ is always true and conditions like ‘Only one action when event loops’ are 

therefore quite handy in many situations. 

Test your application and you should hear a single sound when the mouse moves over 

the button. 

This was the mouse-over sounds. We also want to hear a sound when the user presses 

the button. In the very first event you made to execute another application, you simply 

make a sound action there. There you don’t need any special new conditions or 

anything. The button is only clicked once, so the sound will only be played once. 



Making more buttons 

To make more buttons you can simply go to 

the Frame Editor again, right click your 

button object and click the ‘Clone’ item. 

Enter ‘4’ as the amount of rows you want to 

create (vertically) and the amount of columns 

you want (we’ll leave it as 1 here). 

We don’t want our buttons to be extremely close together so we enter ‘20’ as the Row 

Spacing value. This is the distance in pixels that the rows will get. 

After you press OK you have four buttons in total. Now it’s simply up to you to change 

the text in each button and make new events that execute different programs. 

 

Finalizing the CD-ROM window 

When you run your application, you have probably 

noticed the menu bar at the top of the window, you 

can resize your window and you can maximize the 

window. This has no real purpose in our application 

so we want to remove it. 

Click your application in the workspace toolbar. 

There you get access to most options regarding your 

how your application behaves and looks. Click the 

‘Window’ tab icon to see the window options. If you 

change your window settings to look just like those 

to the left, the window won’t be able to be resized 

anymore (No Thick Frame), you have no maximize 

button (No Maximize button) and the checkbox 

“Menu bar” is unchecked. 

 

 



Making an autorun file 

Many CD-ROMS automatically start a program like ours when we insert a CD. To make an 

application do this, we need to create a little text file containing some information. 

This has nothing really to do with Multimedia Fusion 2 as it’s a feature of windows. 

 

When Windows detects a CD it will look for a file called “autorun.inf”. If it exists, 

windows will read it and then launch the program we told it to inside the file. 

 

A very simple example of an autorun.inf file (you can write this in notepad for example): 

 

 

 

If you build your application as cdrommenu.exe and burn it down to the CD-ROM (in the 

same path as the autorun file) your application will automatically be started when you 

put your CD into the drive. 

This article cannot help you burn your CD-ROM, you need to read your burners manual 

book. 

 

That was it 

This is the end of the article, I hope you learned much about Multimedia Fusion 2 and 

how it could be used to create simple but useful things. 

If you have any questions regarding this article or run into any problems, feel free to 

post a question on the helpful Clickteam forums. 

 

www.clickteam.com 

 

[autorun] 

open=cdrommenu.exe 


