

Multimedia Fusion's runtime
engine.

Getting the most of the Multimedia Fusion's runtime engine.

 This tutorial is about what goes on inside the Multimedia Fusion runtime engine. What
exactly does it do... and when... and how? How does it deal with conditions and actions,
etc.? We lift the hood and take a look!

If you're an advanced user - or are about to become one - you'll will find this especially
valuable: here some explanations for the sometimes mysterious behaviours of Fusion's
runtime engine as well as ways to make your applications run faster. But make sure you
fasten your seat belts, this tutorial is a bit more complex than the previous ones!

(Actually, the following information is valid for the whole click range: since Klik&Play, the
main principles of the runtime engine has not changed - for compatibility reasons.)

 True and fake events.

 Fusion runtime makes a distinction between a true event and a fake event.
 A true event starts with an event-driven condition. A event-driven condition is called by
the system when the event actually happens, for example a click on the mouse button. Non-
event-driven conditions are simply evaluated at each loop.
Only a small number of conditions are truly event-driven. Here is the full list :

Player object
 Number of lives reaches 0
 Player presses ...

Keyboard object
 User clicks...
 User clicks on object...
 User click within zone...
 User press any key...
 (Note that the condition User presses a key is not a true event condition!)

Timer object
 Timer equals...
 Timer is lower than...
 Timer is greater than...

Storyboard Object
 Start of frame
 End of frame
 End of application

System object
 Menu option selected...

Question objects
 Answer is correct
 Answer is wrong
 Answer equals...

Any objects in movements
 Collision with another object
 Collision with the background
 End of path is reached
 Node is reached
 Object leaves the frame area
 Object enters the frame area

Any object with an animation
 End of animation

Any object
 Last object has been destroyed

All of the other conditions are not event-driven. A fake event starts with a non-event
driven condition. The first conditions determines the behaviour of the event.

 What does this change in practice?

 It can change a lot, specially the execution speed of your application. If a event-line starts
with a true event-driven condition, Fusion only executes it when the event happens.

For example, let's imagine an event that checks for a click and a complex calculation to end
the frame:

 The first condition is a true event-driven condition : Fusion ignores it completely until the
Windows system indicates a click on the mouse. As a consequence, no processing power
whatsoever is needed during 99.9% of the time.

Let's reverse the order of the conditions, and insert the calculation before the click.

The calculation has to be evaluated for each loop of the application. In our example, Fusion
looses valuable processing time each time round the loop calculating the sine and cosine.
99.9% of the time, the second condition is false, so Fusion does not execute the action: the

result is of course the same than before, but the main loop has slowed down. The same is
true with the collision detection: collision detection conditions should always come first in
your lines of events.

By inserting the true event-driven conditions first in your line of events, you'll maximise the
efficiency of the Fusion runtime engine.

 Tips and trick in the event editor.

 The importance of the order of the events

 All the events beginning with a non-event-driven condition are evaluated one after the
other at runtime, in the original order of the list. This should be taken in consideration when
using counters and testing them. Let's create an example to demonstrate this. In the frame
editor, drop one counter object, and three different text objects, placing them where you
want in the frame.

Enter the following events in the event editor.

 The example above initialises a counter at 1 when the frame starts. It then checks the
value of the counter, and sets each of the string objects to the current value plus the position
of the timer: this tells us exactly when the counter reached the given value during the run.
Now run the frame, and you should get something like this:

 Of course, you could well get different timer values on different machines. Let's see in
detail what happens in our program :
- Start of frame, the counter is set to 1. The current value of the timer is 10 milliseconds
(time necessary to perform the frame initialisations).
- As counter equals 1, the second line of events is true, and the string object is set to
Counter=1 at timer=10. Then the counter is increased by 1.
- As Fusion evaluates the events one after the other, the third line of our example is
immediately true, so the string 2 object is set to Counter=2 at timer=10, and the counter
increased by 1.
- The same happens for the last line of event : string 3 is set to Counter=3 at timer=10.
The counter reaches 3.
- No more events to evaluate. Fusion carries on with other tasks such as refreshing the
display.
- 20 milliseconds later (exactly 1/50 second), Fusion runs the second loop of the runtime
and evaluates the events again. As the counter is set to 4, no action is done.
You can see that the four lines of events were executed during the first loop of the program.

Now, change the order of the lines like this :

As you can see, we check for the counters in reverse order : 3, 2 then 1. Run this frame - the
result should be very different :

 Here too, you may get different values for the timer depending on your machine. Let's see
what happens in the program:
- Start of frame (timer equals 10 milliseconds due to initialisation process), the counter is set
to 1.
- Fusion evaluates the events, only the last one is true: the string object is set to Counter=1
at timer=10 and the counter's value is increased by one to reach 2.
- No more events to be evaluated: we have reached the end of the list. Fusion carries on
with other tasks, such as refreshing the display. This is the end of the first loop.
- 20 milliseconds, exactly 1/50 of seconds later, Fusion runs the second loop of the runtime,
and evaluates the list of events once again. As our counter is equal to 2, the string 2 object
will be set to Counter=2 at timer=30, and the counter will reach the value 3. Of course the
last line (counter=1) is not true, and Fusion carries on with the other tasks.
- 20 milliseconds later, the same process happens, and the string 3 object is set to
Counter=3 at timer=50.

 The same process as before now took 3 loops of the runtime to be executed, just by
reversing the order of the events! You should take that into account when using counters in
your list of events!

 A better use of groups.

 Groups are certainly the best addition to the click range since Klik & Play. I'm not going
to go into their use in complex applications to structure the list of events here - rather, I'll
focus on the most handy feature of a group of events: its ability to be activated or
deactivated. Careful use of this feature will dramatically reduce the complexity of your list
of events. Let's see how....

 When creating a group of events, you have the choice of activating it or deactivating it
prior to running the frame. A deactivated group of events will be completely ignored by
Fusion. This will not take any processing time (or very little). Passwords are used in
combination with the frames Run-Time option of Password. (which is not part of this
tutorial, sorry)
 A simple action can activate or deactivate any group of events. Let's see an example:
delete the entire list of events of our previous example leaving the objects in the frame, and
enter the following events.

Run the frame, you should get the following result.

- The group of events is initialised at first: the first line of the group is executed and the
counter is set to 1
- The second line is done immediately: the string object is set to Counter=1, and the group
is deactivated. When an action deactivates the current group it is still executed and Fusion
carries on with that action's line of events. Therefore the counter will be incremented to 2.
Fusion only exits a deactivated group at the next line: the counter will never be set to 100.

-> The position of the deactivate action has no importance in the list of actions of the line
-> Events sitting after a line with deactivate will not be executed.

 As you can see, one can very easily create complex lists of tasks to executed only once by
using groups, always and deactivate. Imagine the creation of a complex character made of
many different active objects and counters linked together. Place them in the same group of
events, not activated at start of frame. Make sure that the last action of this group is to
deactivate itself. To create one complex character, your program simply has to activate this
group: it will perform the task only once and quit. It's a kind of routine inside events.

Note: as we have seen before, if the activate action is placed before the group, the group

will perform its task during the same loop of the runtime. If the activate action sits after the
group, it will only be executed on the next loop...

 Fusion's runtime main loop.

 Every game or demo programmer knows about it: a game is build around the main loop.
Funnily enough, the main loop is a programmer's concept that the Click range of products
hides completely, as its way of working is based on events and parallel programming.
Despite the fact that the Click range does not mention the loop anywhere, it still exists! It is
very much there - and it controls the way the runtime engine works!

Every 1/50 of second, the Fusion's engine does the following :

1. Checks the player inputs
2. Animates the objects one by one
3. Checks the timer events
4. Performs the other events
5. Destroys the marked objects
6. Displays the screen, updates the sound buffers
7. Handles Windows messages, and regulates loop speed
8. Checks for end of loop, and jumps to 1 if frame not finished.

1. Checks the player inputs.
The first task of the main loop is to explore the position of the joystick, and to store it for
further use (for example by the movements of the player driven objects). At this time of the
loop, the Player presses ... condition may become true if it is the first condition in a line of
events.

2. Animates the objects one by one.
A simple loop explores all the objects of the frame one after the other. Actually, the order of
that exploration is at the same time both simple and complicated!

- All the objects are created one after the other, following the order in which they were
dropped on the frame in the frame editor. So if you drop object A, object B and object C
and immediately run the frame, that order will hold.
- If you delete object B, and insert an object D immediately after, object D will fill the hole
left by object B in the database, therefore when running the frame, the order of creation for
the frame will be A D C.
- If you work a little longer on the frame, and do some UNDO / REDO steps ... then there is
no way of knowing the order of creation! You can only know that all the objects that were
dropped on the frame are created prior to starting the frame!
- When starting the frame, you can be sure of one thing though: the list of objects in the
runtime has no hole in it, so any object created while running the frame will be positioned
immediately after the last object present when the frame was started. It will be the last to be
animated.
- Of course, a destroy action will create a hole in the middle of the list, and the next object
to be created will fill this hole at that position.

 Who cares, you might well ask? Well, this could explain some of the strange behaviours
you might notice from time to time with the click range: sometimes an object bounces just

fine and sometimes it just won't!

Explanation of bizarre bounces with small objects...

 This kind of problems only occurs with small objects moving at fast pace.

 The picture above represents two small objects moving toward each other at a fast pace.
The scales of grey represent the last positions of the objects in movement. Let's imagine that
the bat comes first in the animation loop. It will be the first to move, to the left, at its speed
(slower than the ball).

 As you can see above, after being moved to the left, the bat hits the ball. Fusion detects a
collision, and the game works fine: the ball bounces on the bat.

 Now, let's image that the ball comes first in the animation loop. We will find ourselves
with the following problematic situation :

 As the ball moves faster than the bat, it jumps over the bat and misses the collision
detection! The ball doesn't bounce on the bat and the game doesn't work! We have
programmed some specific routines in the Fusion engine to prevent this kind of problem:
fast movements are "cut" into smaller chunks and a collision detection performed at each
step. But as this process is very time consuming, we had to limit it to objects bigger than
approximately 10 pixels for full speed.
Conclusion : the order of the animation is important for critical case like this one.
Conclusion 2 : make bigger objects 8-) !

 The object animation loop can call the following event-driven conditions if they come
first in a line of events :
- Collision between Object and OtherObject

- Object collides with the background
- Object is bouncing
- Object has reached a node in its path
- Object has reached the end of its path
- Object leaves the play area
- Object enter the play area

3. Checks the timer events.
After animating the objects, Fusion's main loop explores all the timer-related conditions (if
they come first in the line of events):
- Start of frame. The start of frame conditions are obviously run once during the life of a
frame.
- Timer smaller than.
- Timer equals
- Timer greater than
If multiple events in the event list are true in the same loop, they will be executed on after
the other, in the order of the event list. The following example will store the value 2 in the
counter 2 object - not 1, or 3!

- Every is not called at this stage, but in the next stage, with the other events : it is not a true
event-driven condition.

4. Performs the other events.
 At this stage of the loop, Fusion runtime explores the list of events from the beginning to
the end, and evaluates all the lines of events that begin with a non event-driven condition.

5. Destroys the objects.
 When a Destroy action is called, the object is not destroyed immediately: a flag is set in
the internal object datazone, and the object continues its life until stage 5 of the loop, where
all the marked objects are physically destroyed. At this stage, the condition "Last object has
been destroyed" is called if it is the first condition in a line of events. If this condition is
inserted in the middle of the events, it will only be true at the next loop!

6. Updates the display
 Now that all the internal handling of the objects is done, Fusion can concentrate on
displaying the result of this loop on the screen, and send the sound samples to the speaker.
Please note that in Machine independent speed, this stage of the loop may be skipped for
synchronisation reasons (read the previous tutorial, Getting the most of the application
properties).

7. Handle Windows messages
 Fusion now returns the control to the Windows operating system, allowing multi-tasking
to perform smoothly. This is all handled so as to synchronise the main loop at 50 Hz, not
more.
During this period, the Windows system checks the keyboard and mouse input, and may
call Fusion in return if the user presses a key or clicks with a mouse button. The following
conditions may then be true (if they come first in a line of events)
- User presses a key
- User clicks

8. Checks for end of loop
 Actions that stop the current frame (End of application, Next frame, etc.) do not
immediately end the frame: they just set a flag in the Fusion runtime datazone to indicate
the action. Fusion performs the main loop until the end, where it checks the flag, and
decides whether or not to go back to step 1. As a consequence, events positioned after a
End of frame action will be executed before the frame quits!
 Conditions like End of frame or End of application are called at this time in the loop.

 I hope this tutorial has shone some light on hidden aspects of the runtime engine.
Knowing the way it works internally will allow you to program better and faster
applications, and reduce the number of lines in the event editor.

Copyright © 2006 Clickteam. All rights reserved.
Written by François Lionet. Rewritten by Mike Bibby.

Please do not copy or re-use without written permission.

