GLOE WORS

TUTORIAL

The Glob Wars [Z]@

1| em

i
RED PLAYER:

| 5 '
BLUE PLAYER: ' 10 |

You may not use this tutorial for any other purpose than learning, working and
having fun... In other words: You can use this tutorial for anything You’d like,
as long as it doesn’t involve both a hammer and a squirrel.

marchewkowy@gmail.com

Page 1/21

Hi there, all!

Welcome to Koobare’s second little tutorial, this time focusing on how to create a “Glob Wars” game

using the best multimedia authoring tool ever — Multimedia Fusion 2 by Clickteam! The main purpose of

this tutorial is to teach you how to create, organize, activate and deactivate event groups in order to

create a turn-based two player combat game, a bit similar to the “Worms” series.

Have you ever played one of the classic “Worms” games? Their core idea is pretty simple really. You
control a pack of worms that can use multiple weapons to eliminate another pack of worms in a turn-
based and fun-filled game. I'll show you how to create basics for such a game in Multimedia Fusion 2 —
instead of a pack, we’ll create just a single soldier for each of the teams, instead of multiple weapons —
we’'ll use a grenade. Nonetheless, this tutorial will help you understand the basics of creating a “Worms”

clone — and it’s up to you whether you'll add more features and content or not.

Here are some basic features of the game we’re going to create:

o “Glob Wars” will be a turn-based, two player game, working in a “hot seat” mode (players share
the same computer, exchanging places in front of the monitor).

e Using, activating and deactivating event groups will be crucial for our project. We'll use groups to
separate players’ turns and to give them a few seconds to change their seats (during the “Stand
by — Change seats” mode).

e Each turn will be limited to 12 seconds. Players will have to move fast!

e Our game will utilize the built-in MMF2’s platform and pinball movements. Platform movement
will be used for controlling the Globs (those little jelly-like creatures with helmets on their
heads... err... top), Pinball movement will be used as a movement for the grenades.

e The objective of the game is to eliminate the rival player's Glob by throwing grenades at him.
Each grenade that hits the target subtracts 15 points from its health counter.

o Player will decide at what strength the grenade should be thrown, by pressing and holding the
“CTRL” key. Grenades will be thrown in the direction chosen by a rotating target-marker,
controlled with the “A” and “Z” keys.

e Player’s control will be ignored as soon as he throws a grenade and will be regained at the time
his next turn starts.

e We’'ll use a string object to display communicates by using the “alterable string” function. We'll
also display the Countdown counter’s value in our string object.

e This game will utilize a basic horizontal scrolling system. Current X position of the screen will be
based on X positions of either one of the players, or the grenades they have thrown.

o Game will be displayed in a 245x450 px window, using the 65536 colors mode.

Page 2/21

Part I: Setting up the application.

OK, let’s do this, people! Open Multimedia Fusion 2, create a new application and save it onto your
hard drive (remember that it's always good to have some copies here and there). Go to the application
properties screen (if it didn’t open by itself, right click on your app’s name in the Workspace toolbar and

select “Properties” from the drop down menu).

Firstly, set the graphic mode to 65536 colors. This will make our application work faster on older
computers. Remember one thing, though: if you'll set your app to 65536 colors, all graphics will be
automatically converted into this mode and you will be unable to revert your changes! In other words: it’s
usually best to work with the 16 million colors mode and switch to another mode after you’re done with
creating your whole application and you have a backup copy on your disk or safely burnt onto a CD.
Why? Well, perhaps you'll finally decide that 16 million colors would suit you better — and what then?
There’s no going back when you’ve selected one of the lower-color modes! Keep that in mind. Anyhow,
we’re pretty sure that 65536 will suit us well with the “Glob Wars” game (especially that I've already

used this mode to save the graphics that we’re going to use), so select this option and let’s move on.

The second thing on our “to do” list is setting up the window properties. Open up the “Window” tab in
our application’s properties screen (second from the left) and set the size of the game’s window to
245x450 pixels. Contrary to selecting the graphical mode, window options can be reverted at any time,
so don’t bite your nails before inputting such a weird window size. If you'll decide that this size doesn’t
suit you at all, you can always return to this window once your game is complete and change the
window size to 450x450 or whatever size you’ll want. If you wish, you can play a bit with other options - |

usually change the border color either to black or dark grey, but that’s for you to decide.

Now, when that’s done, we can leave the application properties window and wander off to the

storyboard editor. What are you waiting for, then? Let’s go!

Part ll: Setting up the frame, importing the objects.

Remember what I've told you earlier about our scrolling? Let me remind you, private: “This game will
utilize a basic horizontal scrolling system”. Got it? That means that our frame will only scroll
horizontally, not vertically. Having that in mind, we must create a frame that’s equal to the vertical size of
the window, but is a lot bigger when it comes to the horizontal size. I'd suggest creating a 2000x450

frame. It should suit our needs perfectly.

Open the frame. Now, it’s time to import the objects that we’re going to need while creating our game.

Open the “globlibrary” file (globlibrary.mfa — don’t open the globwars.mfa or the globlevel. mfa files

Page 3/21

yet!), which was packed into the same archive as this .PDF tutorial. Select all the objects and copy them
into your application (Note: most of them use alpha channels, a feature that is unavailable to TGF2
users. TGF2 users should use basic library objects instead). Take a look at them — aren’t they just
gorgeous? You bet they are — it was me who created them after all! ;) After you’re done with all that
admiring, it’s time to give those objects some proper movements and set their preferences. Move it

along to part Ill.

Part lll: Setting up objects preferences and movements.

Let’'s play a bit with our objects and their preferences, shall we? Remember that if you’re unsure which
object is what, you can just hold your cursor over that object and a small tooltip with object’'s name will
appear. You can also use the Object List window, the one to the left of your frame (please note that

selecting an object from the Object List will select all its occurrences in the currently opened frame!).

1) Select the “RedPlayer” object. RedPlayer and BluePlayer are the main characters in our
game. RedPlayer is a Glob creature controlled by player one, while BluePlayer is controlled by
player two. They both have a set of three animations: standing, walking and hit. These creatures
will be controlled by our players with arrow keys (for moving) and the “shift” key (for jumping),

using the basic, built-in Platform movement.

Right-click on the RedPlayer object. Select “properties” from the drop-down menu. Set the FADE
OUT transition to FADE and set it's timer to 2.60 seconds. This will make our little red Glob

nicely fade into the sky when he’ll be destroyed.

Now, go to the “Movement” tab (that's the one with the little man running, third from left). Open
up the movement type list and select “Platform movement”. Set the initial direction to 0 (right).
Leave this object under the control of player one. Set the speed to 12, both acceleration and
deceleration to 50. You can try your movement, if you wish. Now, set the jump gravity to 30,

leave it’s strength at 50 — and we’re done with setting up the movement!

Go to the “Values” tab (fifth from left, third from right). Our characters will need two Alterable
Values — one for a usage similar to a flag (it's value will be either 0 or 1, to help us determine
whether the player has already started powering up his grenade throw or not) and the second
one for storing the direction at which this player’s target-marker is currently set. We could use
different methods of value storage here, like GlobalValues, Counters or — as far as the first
Alterable Value goes — Object Flags, but I'd like to introduce you to the wonderful world of

Alterable Values.

Page 4/21

2)

3)

Alterable Values are something like an internal counter of an object, allowing you to store
numbers inside the data of your active. This helps a lot when you create a game with lot’s of
objects, especially that alterable values are NOT shared between different instances of a single
object (in other words: if you'll create six soldiers of the same type with the “create object’
command, you can store their health counters in each one of them, by using their AV’s, instead
of having to create multiple Counter Objects and linking them up with multiple events). Alterable

Values are also a bit faster than Counters, so using them here and there is usually a good idea.

Now, let’s create those AV’s. Having the RedPlayer object selected and the Values properties
tab opened — click on the “new” button under the “Alterable Values” text. A new Alterable Value
will be created. Click on the “new” button again — now you have two AV’s, ready to use! You can

name them if you want (just double-click on their name), but | don’t think that it's necessary.

OK, we’re finally done with setting up the RedPlayer object! Let’s go for the BluePlayer one.

Select the “BluePlayer” object. Create the same FADE OUT transition, as you did with the
“RedPlayer”. Go to the “movement” tab and do the same there too, with just a slight difference:
set the initial direction to 16 (right), and set the control to Player 2. Create two Alterable Values

for this object, in the same manner as you did for the RedPlayer one. We're done here.

Select the “Grenade” object. Set it's FADE OUT to BANDS, and set it's timer to 2.60
seconds. The player won’t actually see the grenade’s fade out effect (since we’re going to set
up an event making this object invisible as soon as it blows — and then create the “Boom” object

instead), but it will help us with the horizontal scrolling feature — you’ll soon learn why.

Secondly, go to the “Movement” tab. We're going to set up two different movements for this
object: the main one (“Pinball movement” — a basic, built-in gravity-controlled movement), used
most of the time, and a secondary one (“Static”), selected by the game when the grenade

collides with the ground and we don'’t want it to bounce anymore.

Select the “Pinball movement”. Set the “Gravity” to 20, “Deceleration” to 40, “Initial speed” to 70
and set the initial direction to the direction number 8 (up). Both the “Initial speed” and “direction
number” preferences will be set at runtime, with the help of the events we’re going to create later
on — we'’re setting them now just for the sheer pleasure of setting them (and giving you the

possibility to see how the grenade works, if you press the “try movement” button).

Now, let's create the second movement. This is quite easy, actually. In the “Movement” tab, just

click on the “Movement #1” text. A button will appear to the right. Click it. Then, press the

Page 5/21

4)

5)

6)

7)

8)

9)

“Create new movement” button in the newly opened dialogue box (it's to the right). Click OK. A

new movement will appear at your list — “Static” by default. You’re done here.

The last thing that we want to set up when it comes to the “Grenade” object are Alterable
Values...Well, one Alterable Value to be exact. Just create a new Alterable Value at the right tab

and the “Grenade” object is finally ready.

Select the “Boom” object. This object will act as our explosion and will be created every time
the grenade goes off. Set it's FADE OUT animation to ZOOM, and set it's timer to 0.56

seconds.

Select the “Targeter” object. This object will allow the player to choose at which direction he
wants to throw the grenade (by cycling through directions with “A” and “Z” keys). Well, on second

thought there’s nothing to change here, so let’'s move along.

Select the “Interface” object. This is an object that will act as our interface basis — we’ll put
health counters and the countdown timer on top of it. The “Interface” object should not scroll
along with the rest of the objects — it should always stay in one position. To do so, enter it's
properties, go to the “RunTime Options” tab (fourth from the left) and UNCHECK the “Follow
the frame” and “Destroy object if too far from frame” preferences. Note that this is an active

object — this information will come in handy in a second.

Select the “RedHealth” counter. Note that it is set as a “Horizontal bar” with a solid color,
starting the count from left, with a minimal value of 0 and both maximal and initial values set to
100. Make sure that the “Display as background” (in the “Display Options” tab) option is OFF.
Why is it so important? Because the “Interface” object is an active, remember? All actives are
always displayed in front of the background objects, so this counter would be behind the
“Interface” object, and thus would not be visible. Go to the “RunTime options” tab (third from the

right) and set both the “Follow the frame” and “Destroy object if too far from the frame” off.

Select the “BlueHealth” counter. Configure it in the same way as the “RedHealth” counter.
Make sure (by right-clicking on the object and entering the “Order” sub-menu) that both

“‘RedHealth” and “BlueHealth” counters are displayed in front of the “Interface” object.

Select the “ThrowStrength” counter. Note that it is set as a “Horizontal bar” with a solid color,
starting the count from left, with a minimal value of 0, initial value of 1 and the maximum value
set to 85. This counter will help us determine the strength of the throw, and thus — the initial

speed of the thrown grenade. You'll find out more about this in the later parts of this tutorial.

Page 6/21

Make sure that the “Display as background”, “Follow the frame” and “Destroy object if too far

from the frame” options are all OFF.

10) Select the “Ladder” backdrop object. Make sure that it's “obstacle type” (in the “RunTime
Options” tab) is set to “Ladder”. The default Platform movement will now identify this backdrop

as a ladder, and thus enable the player to climb it with the use of the up arrow key.

11) Select the “Grass_QB 1” quick backdrop object. Make sure that it's “obstacle type” is set to
“None”. Make the same for the “Sky_QB” quick backdrop, and the “Bunker_down”, “RedFlag”
and “BlueFlag” backdrop objects.

12) Select all the remaining backdrop objects, one by one. Make sure that all of them have the
“obstacle type” set to “Obstacle”. You could also switch some of them to the “Platform” mode,
but that doesn’t work too well with the Pinball movement, so our grenade’s bounce could be

even more glitchy than it will be. :)

13) Create a Counter object. Set it's initial and maximum values to 12, minimal value to 0. Set its
display type to “hidden” and leave it just a few pixels outside our frame’s borders. Name this
counter as “Countdown” — we will use it to determine how many seconds has the player to move

before his turn ends.

14) Create another Counter object. Set it’s initial and minimum values to 0, maximum value to 2.
Make it hidden and position it right to the “Countdown” object. Rename it to “WhichPlayer” — we

will use this counter to determine who'’s turn was it before and who should play now.

15) Select the “Displayer” object. We will use it to display game texts (such as “get ready!”) and
the “Countdown” counter’s value. Make sure that it’s vertical and horizontal alignments are set to

“center” (you'll find those options under the “Text Options” tab, in the properties window).

Ok, that’s it when it come to setting up those objects. It's time to create a level, which will act as the

world shattered with the Globs’ mortal conflict.

Part IV: Level design.

First of all, let me introduce you to a little trick, a real time-saver and one of the MMF2'’s features that
save a lot of effort: moving objects in your frame with 1-pixel precision, using the arrow keys. It's
really simple — just click on an object, press the up arrow key, and... Wow! It just moved 1 pixel up!

Great! Now, select another object and HOLD the left arrow key...Wow again! Isn’t that great? It will

Page 7/21

really save you lots of time, especially if you'll remember that you can move couple of objects at the

same time with this method (just left-click on the objects you’d like to move while holding the SHIFT key

to select them). Or even all of them (just press CTRL+A to select all objects in the frame).

Now, would you like to play a little and create your own level? If not — just open my ready-to-use level

from the “globlevel” file (search for the globlevel.mfa file in the directory/archive that contains this

.PDF tutorial) — it has all the properties set up and the level design ready, so all we have to do is to add

some action with the event editor. If you decided to load my level — continue to the next part. If not —

here are some basic tips for you to use, when creating your own map:

a)

b)

d)

Remember that you can either duplicate or clone an object (both options are available from the
drop-down menu if you’ll right-click on an object). Cloning creates a totally new object, with the
same properties and looks as the original one. Duplicating creates a new instance of the same
object — if you'll change the settings on one of the duplicates, resize it or add a new ink effect —
all this changes will be applied to all of the duplicates, as well as to the original object. You can
also duplicate an object by using the CTRL+C and CTRL+V keys or by dragging & dropping

objects from the object list.

Remember that you can zoom out and zoom in onto the frame — you’ll find zoom options in the

View menu of MMF2. This can be helpful when you want to see your whole playfield at once.

Remember that you should put the Interface part in the
top of the frame. Remember about all those vertical bar

counters and our String object! Take a look at the

image to the right if you need help.

Remember to combine various types of backdrop objects. Look at these images for some tips:

e) Keep in mind that the players should have

+ +
enough space to move around. Adding some
levitating platforms connected to the ground
All those elements should) o
work well together! via a ladder can be a nice idea too!

When you're done — proceed to the next part.

Page 8/21

Part V: Introduction to groups.

ﬁ'l'l‘ifl‘:;;fe'gz li"; Before we'll get to coding, allow me to introduce you to the
"‘1“? e wonderful world of groups. Open up your event editor.
Add & new condition | Right-click on the event number (the box with the number
_' A comment on it, just to the left from the “New condition” text), and
. choose Insert > A group of events from the pop-up menu

=

(take a look on the image to the left if you require visual

help). A new dialogue box will appear, asking you for the

name of your group — input anything, make sure that the
“Active when frame starts” option is selected and click the “OK” button. Voila! You've just created your
first event group! Congratulations! You can now create new events INSIDE this group, drag & drop
previously created events into it, close it and open it in the Event editor or — what’s really important! —
You can decide whether you want this group to be currently activated or deactivated, and you can make

the decision to do so on runtime! Why is it so important, should you ask? I'll give you this exampile...

Imagine this: you want to create a game with an object (for example: an alien creature) that behaves
COMPLETELY different depending on the given circumstances. If the player enters the frame from the
left — the alien will greet him, dress up like a clown, give the player a cigar and start a conversation. But
if the player enters the frame from the right — the alien will shout something in Venusian, take out his
gun, throw a plasma grenade, jump onto his spaceship and run away. Sure, you can code this without
groups — you'll just need to check a counter or an Alterable Value on each and every condition... But
there’s an easier way to do this: just create two event groups and uncheck the “Active when frame
starts” checkbox in both of them. Put all the events for the “alien behaving friendly” scenario into group
one, in group two — all the “alien is hostile” events. Then, just create two conditions — if the player enters
the frame from the left: activate the “Friendly alien” group and leave the “Enemy alien” group
deactivated. If the player enters the frame from the right: activate the “Enemy alien” group and leave the

first group inactive. Isn’t that simple?

Event groups can come very handy, especially when you’re creating a bit more advanced applications.
Groups are great at simplifying your programming, and in MMF2 you can even create sub-groups
inside groups, establishing a fully professional group activation/deactivation system, that let’s you save

lots of system resources by deactivating currently unused and unimportant code.

You can play a bit with groups, if you wish, practicing the art of dragging and dropping conditions into
them and creating new groups with just a single click (well... almost a single click). When you’ll be ready
— delete all the groups and events that you’ve created by far and let’s proceed to part VI, where we’ll
finally get to do some coding! You'll find out how to use groups to create a fully operational turn-based

game in a jiffy!

Page 9/21

Part VI: Programmer’s delight

OK, let’s start our little programming experience, shall we? This will really be as simple as possible.

Allow me to introduce you to an event-recording system that I'm going to use in this tutorial:

IF (Condition): [Object for the condition] > Condition group > Condition
THEN (Action): [Object for the action] > Action group > Action

Not too complicated, is it? All the conditions will be marked in red color, while actions are written in a
fancy blue one. If we’ll have a multi-condition event (for example: the condition is true only when a

counter is equal to zero and the selected object collides with backdrop), then we’ll have:

IF (Condition 1): [Object for condition 1] > Condition group 1 > Condition 1
IF (Condition 2): [Object for condition 2] > Condition group 2 > Condition 2
THEN (Action): [Object for the action] > Action group > Action

If we’d have a multi-action event, it would look like this:

IF (Condition): [Object for condition] > Condition group > Condition
THEN (Action 1): [Object for the action 1] > Action group 1 > Action 1
THEN (Action 2): [Object for the action 2] > Action group 2 > Action 2

It's pretty simple, right? Let’s see it in action, then.

1) Create a “RedPlayer collides with background” condition. To do so, create a new condition, go to
the “RedPlayer” object, right-click on it, go to the “Collisions” condition group and select “Backdrop”.
Your condition is ready. Now go to the corresponding white tile in the “RedPlayer” object’s column, right-
click on it, go to the “Movement” group and select the “Stop” action. You currently have created such an

event:

IF: [RedPlayer] > Collisions > Backdrop
THEN: [RedPlayer] > Movement > Stop

This event will stop the “RedPlayer” object, when the “RedPlayer” collides with backdrop. Let’s do the

same for the “BluePlayer” object... Create a new event:

IF: [BluePlayer] > Collisions > Backdrop
THEN: [BluePlayer] > Movement > Stop

Pretty simple. There will be more advanced events later on, though, keep that in mind.

Page 10/21

2) No

w, let’s create a condition that is true when the “BluePlayer” and “RedPlayer” objects collide:

IF: [RedPlayer] > Collisions > Another object > [BluePlayer]

THEN
THEN

: [RedPlayer] > Movement > Bounce

: [BluePlayer] > Movement > Bounce

Hooray! We've got a basic collision system ready!

3) No

w, let’'s create a “Start of Frame” condition that sparkles quite a lot of actions:

IF: [Storyboard Controls] > Start of frame

THEN
THEN
THEN
THEN
THEN
THEN
THEN

: [Sound Object] > Music > Play music (select any music from the MMF2 midi library)
: [Player 1] > Player Control > Ignore control

: [Player 2] > Player Control > Ignore control

: [Grenade] > Destroy

: [BluePlayer] > Alterable Values > Set (set the Alterable Value B to 16)

: [WhichPlayer Counter] > Set Counter (set the Counter to 2)

: [ThrowStrength Counter] > Visibility > Make object invisible

OK, now let’s have a little review of what we have just done... As soon as the frame starts, the game:

Note

Plays the selected MIDI file (I'd suggest looping it continuously);

Starts to ignore players’ control (players can’t move their Globs until each player’s turn starts —
we’'ll find out more about this later on, while coding the turn system);

Destroys the original “Grenade” object (we don’t need it wandering around the frame, as we
will create new instances of the grenade whenever the player will command his Glob to throw one,
using the “create new object” command);

Changes the Alterable Value B of “BluePlayer” to “16” (this has a lot more sense if you
remember that the Alterable Value B is the AV that we wanted to use to store the direction that the
rotating targeting-marker is set to — in other words: this little action makes the targeting-marker
look to the left when BluePlayer will start his first turn);

Sets the “WhichPlayer” counter to “2” (you'll find out more about this soon enough, but let me
just say that this means that player 1 will have his turn as soon as the “stand by” period is over)

Makes the “ThrowStrength” counter invisible (this is purely aesthetical).

that if you don’t have the “Player 2” object in your objects list in the Event editor, you’'ve most

probably forgot to set the “BluePlayer” object’s control to “Player 2”.

Take

a look at the image below, this is how our Event editor should look like by now (note that it can

differ, since you could have created all the objects and/or events in a different order — so don’t panic if it

doesn’t look exactly like this):

Page 11/21

filllllll'?::gjeer;ss g@ @ B o @'ﬁ-‘l"‘ﬁ) =0 o — ==

1 e StartofFrame \/ \/ \/ \/ \/I| | | | | \/
| Set Alterable Value Bto 16

2 | ' collides with the background \/

3 |e . collides with the background \/

4 e Caollision between ' and ' \/ \/

4) It's time to enable the players to rotate the targeting marker (the “Targeter” object) — it's pretty

important, since all the grenades will be thrown in the direction that the “Targeter” is set to:

IF: [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed (press the “A” key)
IF: [Special Object] > Limit conditions > Restrict actions (set the restriction timer to 0.25 seconds)
THEN: [Targeter Object] > Direction > Select direction (a dialogue box will open — press the “calculate
direction” button — that’s the one with the “1+1” symbol — and input: Dir("Targeter”)+1)

Take a look at the expression that we inputted in the Expression editor. It sets the direction of the
“Targeter” object to the “current direction +1”. It can be pretty useful, right? Don’t worry about
memorizing it, though, it can be easily accessed from the Expression editor. Just do it this way: when
you’re at the point where we inputted that expression last time, press the “retrieve data from object”

button, and go along this path:

EXPRESSION: [Targeter object] > Animation > Current direction value

The Expression editor should return this expression: Dir("Targeter"). It's up to You to add the “+1” to

this formula and receive a nice Dir("Targeter")+1.

Now we can rotate the “Targeter” counterclockwise. Let’s enable the player to rotate it clockwise by

pressing and holding the “Z” button. Create a new event:

IF: [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed (press the “Z” key)
IF: [Special Object] > Limit conditions > Restrict actions (set the restriction timer to 0.25 seconds)
THEN: [Targeter Object] > Direction > Select direction (a dialogue box will open — press the “calculate
direction” button and input: Dir("Targeter")-1)

Note that the expression this time is Dir("Targeter")-1.

OK, it's done!

The player will now be able to rotate the “Targeter” with “A” and “Z” keys (please, note that this is

possible only because the “Targeter” has already been created with proper animation, utilizing a simple

Page 12/21

hot-spot trick - You can take a look at it's animations a bit later, just to fully understand how this was

possible). Take a look at the image below to have a visual hint on what we've just created:

TEE S ERRE =80 | ma s

7 * Repeatwhile "A" is pressed
+ Restrict actions for 00™-25

Set direction to Dir(" L ")+1

* Repeatwhile"Z"is pressed
+ Restrict actions for 0025

This was quite easy, wasn't it? Save your project, then.

5) Let’'s move along — time to decide what will happen to our Globs when they will be hit by a grenade
blast (by the “Boom” object — note that only a collision with the “Boom” object will make our Globs

sustain damage — nothing will happen on collision between the Globs and the grenade itself):

IF: [Boom Object] > Collisions > Another object > [RedPlayer]
THEN: [Sound object] > Samples > Play sample (pick something from MMF2’s sound libraries)
THEN: [RedPlayer] > Animation > Change > Animation sequence > Hit

THEN: [RedHealth counter] > Subtract from counter (subtract 15 from this counter)

As you can see, a collision between the “RedPlayer” and the “Boom” object will result in subtracting 15
points from the “RedHealth” counter. Now it's time to do the same for the “BluePlayer” object. Create a

new event:

IF: [Boom Object] > Collisions > Another object > [BluePlayer]
THEN: [Sound object] > Samples > Play sample (pick something from MMF2’s sound libraries)
THEN: [BluePlayer] > Animation > Change > Animation sequence > Hit

THEN: [BlueHealth counter] > Substract from counter (substract 15 from this counter)

Don’t worry that we haven’t got the “Boom” object on stage yet — it will be created in due time, when

we'll establish all the needed groups.

6) Another event — this one plays a sample (only once, thanks to the limiting condition of the “Only one
action when event loops” — this condition can really be quite useful, so get to know it a bit better at your

free time) and destroys the Glob if it's health goes all the way to zero:

IF: [RedHealth counter] > Compare the counter to a value (counter’s value is equal 0)

IF: [Special Object] > Limit conditions > Only one action when event loops

THEN: [Sound object] > Samples > Play sample (pick something from MMF2’s sound libraries)
THEN: [RedPlayer] > Destroy

And here’s the same thing for Player 2:

Page 13/21

IF: [BlueHealth counter] > Compare the counter to a value (counter’s value is equal 0)

IF: [Special Object] > Limit conditions > Only one action when event loops

THEN: [Sound object] > Samples > Play sample (pick something from MMF2’s sound libraries)
THEN: [BluePlayer] > Destroy

7) These two events control what to do when one (or both) of the Globs has been destroyed (the game
just goes to the next frame — if there is a next frame, that is. If there’s not — the game will most probably

just exit the application):

IF: [RedPlayer] > Pick or count > Have all “RedPlayer” been destroyed
THEN: [Storyboard Controls] > Next frame

IF: [BluePlayer] > Pick or count > Have all “BluePlayer” been destroyed
THEN: [Storyboard Controls] > Next frame

OK. We’'re now ready to play with our groups. We shall create four — one called “Stand by — change
seats” (which will contain all the events that “happen” in-between the players’ turns), the second one

called “RED player’s turn”, “BLUE player’s turn” as the 3™ one and the last one: “Throwing a grenade”.
8) Create a new event group, name it “Stand by — change seats” and make sure that the “Active
when the frame starts” option is ON. When the game starts, this will be the only group activated,
giving the players’ a couple more seconds to prepare for combat. It would be best to create the three
other groups now as well: create three more groups, calling them “RED player’s turn”, “BLUE
player’s turn” and “Throwing a grenade”, but remember to switch the “Active when the frame starts”

option OFF in all of them.

Let’s get back to the first group we’ve created. As soon as you’re ready, create these events inside the

“Stand by — change seats” group:

IF: [Special Object] > Group of events > On group activation

THEN: [Sound object] > Samples > Play sample (select the “Teeth chatter” file from MMF2’s sound libraries)
THEN: [Player 1] > Player Control > Ignore control

THEN: [Player 2] > Player Control > Ignore control

THEN: [Targeter Object] > Visibility > Make Object Invisible

THEN: [Countdown Counter] > Set Counter (set the Counter to 3)

THEN: [ThrowStrength Counter] > Visibility > Make object invisible

THEN: [Displayer String Object] > Text > Set font size (set font size 8, keep current border size)

THEN: [Displayer String Object] > Text > Set bold (set bold effect ON)

THEN: [Displayer String Object] > Change alterable string (input: "GET READY?!")

Page 14/21

This will set all these parameters as soon as this group is activated — just inspect them on your own,

they’re pretty easy to understand. Let’s go further on, and create another event, shall we?

IF: [The Timer Object] > Every (set the timer to “every 1.00 second”’)

THEN: [Countdown Counter] > Substract from Counter (substract 1 from counter)

Now we have our countdown timer ready, as far as this group goes. There are still two events to

program before we can move to the next group, though:

IF: [Countdown Counter] > Compare the counter to a value (counter is equal 0)

IF: [WhichPlayer Counter] > Compare the counter to a value (counter is equal 1)

THEN: [Special Object] > Group of events > Activate (select the “BLUE Player’s turn” group)

THEN: [Special Object] > Group of events > Deactivate (select the “Stand by — Change seats” group)

IF: [Countdown Counter] > Compare the counter to a value (counter is equal 0)

IF: [WhichPlayer Counter] > Compare the counter to a value (counter is equal 2)

THEN: [Special Object] > Group of events > Activate (select the “RED Player’s turn” group)

THEN: [Special Object] > Group of events > Deactivate (select the “Stand by — Change seats” group)

And that’s all here, folks! Remember that all these events have to be INSIDE the group! Don'’t forget!

9) Having the “Stand by — Change seats” group properly set up, let’s go to the second group on our list

— the one called “RED Player’s turn”. Create this event inside:

IF: [Special Object] > Group of events > On group activation

THEN: [Sound object] > Samples > Play sample (select a simple “pop” sound from MMF2’s sound libraries)
THEN: [Player 1] > Player Control > Restore control

THEN: [Player 2] > Player Control > Ignore control

THEN: [RedPlayer] > Alterable Values > Set (set the Alterable Value A to 0)

THEN: [Targeter Object] > Direction > Select direction (a dialogue box will open — press the “calculate
direction” button and input: Alterable Value B("RedPlayer") - this will retrieve RedPlayer’s Alterable Value B — if
you have changed it’s name, either input that name instead of “Aterable Value B” in this expression, or use the
“Retrieve data from object” button and retrieve the AV directly from “RedPlayer’)

THEN: [Targeter Object] > Visibility > Make Object Reappear

THEN: [Countdown Counter] > Set Counter (set the Counter to 12)

THEN: [WhichPlayer Counter] > Set Counter (set the Counter to 1)

THEN: [ThrowStrength Counter] > Set Counter (set the Counter to 1)

THEN: [Displayer String Object] > Text > Set font size (set font size 24, keep current border size)

THEN: [Displayer String Object] > Text > Set bold (set bold effect OFF)

Quite massive, isn’tit? It sets up all the parameters that this group needs to function correctly.

Page 15/21

Now, let’s create another event, this time with the “Always” condition (this will — as long as this group is
active - control our vertical scrolling, position of the “Targeter” object and displaying the “Countdown”

counter’s value in the “Displayer” string):

IF: [Special Object] > Always

THEN: [Storyboard Controls] > Scrollings > Center horizontal position of window in frame (input in the
Expression editor: X("RedPlayer") — this will retrieve RedPlayer’s X position)

THEN: [Targeter Object] > Position > Select position (select [2, -18] relatively to RedPlayer)

THEN: [Displayer String Object] > Change alterable string (input in the Expression editor:

Str$(value("Countdown")) — this will display the "Countdown” counter’s value in our string)

Note that you can recreate all these expressions by using the “retrieve value from object” button and

browsing the objects list for yourself.

Let’s get another event working in this group (this will make the “Countdown” counter work properly):

IF: [The Timer Object] > Every (set the timer to “every 1.00 second”)

THEN: [Countdown Counter] > Substract from Counter (substract 1 from counter)

Here’s an event that will help us control the cycle of turns in our game:

IF: [Countdown Counter] > Compare the counter to a value (counter is equal 0)
THEN: [Special Object] > Group of events > Activate (select the “Stand by — Change seats” group)
THEN: [Special Object] > Group of events > Deactivate (select the “RED Player’s turn” group)

We’re almost at the end (as far as this group is concerned)! It’s time to create three little events that will

control the process of throwing grenades at your opponent:

IF: [Keyboard & Mouse Object] > The Keyboard > Upon pressing a key (press the “CTRL” key)

THEN: [RedPlayer] > Alterable Values > Set (set the Alterable Value A to 1)

THEN: [RedPlayer] > Alterable Values > Set (set the Alterable Value B using this expression: Dir("Targeter") —
this will save the current direction number of “Targeter” to the Alterable Value B of the “RedPlayer” object)

THEN: [ThrowStrength Counter] > Visibility > Make object Reappear

IF: [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed (press the “CTRL” key)
THEN: [ThrowStrength Counter] > Add to Counter (Add 1 to counter)

IF: [RedPlayer] > Alterable Values > Compare to one of the Alterable Values (Alterable Value A is equal 1)
IF: [INEGATE] [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed (press “CTRL’)
THEN: [Player 1] > Player Control > Ignore control

THEN: [Special Object] > Group of events > Activate (select the “Throwing a grenade” group)

THEN: [Special Object] > Group of events > Deactivate (select the “RED Player’s turn” group)
Page 16/21

Note: to negate, firstly create the condition that you want to negate - such us our “repeat while key is
pressed” condition - then right-click on it and select “negate” from the pop-up menu. Not all conditions
can be negated, but a lot of them can (i.e. “Check for mouse pointer in a zone”, “Check for mouse
pointer over an object”, “Overlapping another object”, all conditions that come from the Sound object,

the Array object etc.). To learn more — just check your MMF2 help file.

Let’s save our project and move on...

10) We've just finished creating the “RED Player’s turn” group. Now let’s do the same for the “BLUE
Player’s turn” one — it consists of the same events, but there are some conditions and actions that
differ a bit from the “RedPlayer” version (which is pretty obvious). If something’s not working the way it

should, double-check if the actions correspond to the right object:

IF: [Special Object] > Group of events > On group activation

THEN: [Sound object] > Samples > Play sample (select a simple “pop” sound from MMF2’s sound libraries)
THEN: [Player 1] > Player Control > Ignore control

THEN: [Player 2] > Player Control > Restore control

THEN: [BluePlayer] > Alterable Values > Set (set the Alterable Value A to 0)

THEN: [Targeter Object] > Direction > Select direction (a dialogue box will open — press the “calculate
direction” button and input: Alterable Value B("BluePlayer") - this will retrieve BluePlayer’s Alterable Value B)
THEN: [Targeter Object] > Visibility > Make Object Reappear

THEN: [Countdown Counter] > Set Counter (set the Counter to 12)

THEN: [WhichPlayer Counter] > Set Counter (set the Counter to 2)

THEN: [ThrowStrength Counter] > Set Counter (set the Counter to 1)

THEN: [Displayer String Object] > Text > Set font size (set font size 24, keep current border size)

THEN: [Displayer String Object] > Text > Set bold (set bold effect OFF)

IF: [Special Object] > Always

THEN: [Storyboard Controls] > Scrollings > Center horizontal position of window in frame (input in the
Expression editor: X("BluePlayer") — this will retrieve BluePlayer’s X position)

THEN: [Targeter Object] > Position > Select position (select [2, -18] relatively to BluePlayer)

THEN: [Displayer String Object] > Change alterable string (input in the Expression editor:

Str$(value("Countdown")) — this will display the "Countdown” counter’s value in our string)

IF: [The Timer Object] > Every (set the timer to “every 1.00 second”’)

THEN: [Countdown Counter] > Substract from Counter (substract 1 from counter)

IF: [Countdown Counter] > Compare the counter to a value (counter is equal 0)
THEN: [Special Object] > Group of events > Activate (select the “Stand by — Change seats” group)
THEN: [Special Object] > Group of events > Deactivate (select the “BLUE Player’s turn” group)

Page 17/21

IF: [Keyboard & Mouse Object] > The Keyboard > Upon pressing a key (press the “CTRL” key)

THEN: [BluePlayer] > Alterable Values > Set (set the Alterable Value A to 1)

THEN: [BluePlayer] > Alterable Values > Set (set the Alterable Value B using this expression: Dir("Targetter")
— this will save the current direction number of “Targeter” to the Alterable Value B of the “BluePlayer” object)
THEN: [ThrowStrength Counter] > Visibility > Make object Reappear

IF: [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed (press the “CTRL” key)
THEN: [ThrowStrength Counter] > Add to Counter (Add 1 to counter)

IF: [BluePlayer] > Alterable Values > Compare to one of the Alterable Values (Alterable Value A is equal 1)
IF: [INEGATE] [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed (press “CTRL”)
THEN: [Player 1] > Player Control > Ignore control

THEN: [Special Object] > Group of events > Activate (select the “Throwing a grenade” group)

THEN: [Special Object] > Group of events > Deactivate (select the “BLUE Player’s turn” group)

OK, only one group to go! | hope that you remembered to save your app from time to time?

11) Let’s get to the grenade-throwing part. Create a new event inside the “Throwing a grenade” group:

IF: [Special Object] > Group of events > On group activation

IF: [WhichPlayer Counter] > Compare the counter to a value (counter is equal 1)

THEN: [Sound object] > Samples > Play sample (select a sound from MMF2’s libraries, i.e. “Whoosh quick 2”)
THEN: [Create new objects] > Create object > [Grenade] (create it at [0,-25] relative coordinates from the
“RedPlayer” object)

THEN: [Player 1] > Player Control > Ignore control

THEN: [Player 2] > Player Control > Ignore control

THEN: [Grenade] > Movement > Set speed (use this expression: value("ShotStrength™)+30)

THEN: [Grenade] > Direction > Select direction (a dialogue box will open — press the “calculate direction”
button, input this: Dir("Targeter") and press “OK’)

THEN: [Grenade] > Alterable Values > Set (set the Alterable Value A to 0)

THEN: [Targeter Object] > Visibility > Make Object Invisible

THEN: [ThrowStrength Counter] > Visibility > Make Object Invisible

THEN: [Displayer String Object] > Text > Set font size (set font size 8, keep current border size)

THEN: [Displayer String Object] > Text > Set bold (set bold effect ON)

THEN: [Displayer String Object] > Change Alterable String (change Alterable String to “FIRE IN THE HOLE!”)

When that’'s done, let’s create another event, similar to the one above:

IF: [Special Object] > Group of events > On group activation

IF: [WhichPlayer Counter] > Compare the counter to a value (counter is equal 2)

THEN: [Sound object] > Samples > Play sample (select a sound from MMF2’s libraries, i.e. “Whoosh quick 2”)
THEN: [Create new objects] > Create object > [Grenade] (create it at [0,-25] relative to the “BluePlayer” object)

THEN: [Player 1] > Player Control > Ignore control
Page 18/21

THEN: [Player 2] > Player Control > Ignore control

THEN: [Grenade] > Movement > Set speed (use this expression: value("ShotStrength")+30)

THEN: [Grenade] > Direction > Select direction (a dialogue box will open — press the “calculate direction”
button, input this: Dir("Targeter") and press “OK”)

THEN: [Grenade] > Alterable Values > Set (set the Alterable Value A to 0)

THEN: [Targeter Object] > Visibility > Make Object Invisible

THEN: [ThrowStrength Counter] > Visibility > Make Object Invisible

THEN: [Displayer String Object] > Text > Set font size (set font size 8, keep current border size)

THEN: [Displayer String Object] > Text > Set bold (set bold effect ON)

THEN: [Displayer String Object] > Change Alterable String (change Alterable String to “FIRE IN THE HOLE!”)

This little event will control the horizontal scrolling while the “Throwing a grenade” group is active:

IF: [Special Object] > Always
THEN: [Storyboard Controls] > Scrollings > Center horizontal position of window in frame (input in the

Expression editor: X("Grenade") — this will retrieve “Grenade” object’s X position)

And here comes the “Grenade” object’s collision detection:

IF: [Grenade] > Collisions > Backdrop

IF: [Grenade] > Movement > Compare speed of “Grenade” to a value (is greater or equal 4)

IF: [Special Object] > Limit conditions > Only one action when event loops

THEN: [Sound object] > Samples > Play sample (select a sound from MMF2’s libraries, i.e. “IMPACT02.wav”)
THEN: [Grenade] > Movement > Bounce

THEN: [Grenade] > Alterable Values > Add to (add 2 to the Alterable Value A)

Note that the event above is true ONLY when our Grenade’s speed is greater or equal 4. Here’s an

event that will control the situation when it's speed is a bit lower:

IF: [Grenade] > Movement > Compare speed of “Grenade” to a value (is lower than 4)

IF: [Grenade] > Collisions > Backdrop

IF: [Special Object] > Limit conditions > Only one action when event loops

THEN: [Sound object] > Samples > Play sample (select a sound from MMF2’s libraries, i.e. “IMPACTO02.wav”)
THEN: [Grenade] > Movement > Stop

THEN: [Grenade] > Movement > Multiple movements > Select movement (select Movement #2)

Here’s an event that will bounce the Grenade when it will hit the “Interface” object:
IF: [Grenade] > Collisions > Another object > [Interface]

THEN: [Sound object] > Samples > Play sample (select a sound from MMF2’s libraries, i.e. “lIMPACT09.wav”)

THEN: [Grenade] > Movement > Bounce

Page 19/21

Another event, this time it's for keeping the “Grenade” object inside the frame:

IF: [Grenade] > Position > Test position (a dialogue box will open — select the “leaves in the right”, “leaves in the
left”, “leaves in the top” and “leaves in the bottom” buttons and click “OK” to create a “leaves the play area”
condition)

THEN: [Sound object] > Samples > Play sample (select a sound from MMF2’s libraries, i.e. “IMPACTO02.wav”)

THEN: [Grenade] > Movement > Bounce

The grenade will explode when it's Alterable Value A will be equal or greater than 5. | guess that you've
already noticed that bouncing of the backdrop makes it a bit closer to explosion? Let’s set up an event

that will also trigger the explosion on timer:

IF: [The Timer Object] > Every (set the timer to “every 1.00 second”)
THEN: [Grenade] > Alterable Values > Add to (add 1 to the Alterable Value A)

And here comes the “big boom event’! As soon as the grenade bounces a bit and the time passes, it's

Alterable Value A comes to the “explosion point” — becomes equal or greater than 5. And then...

IF: [Grenade] > Alterable Values > Compare to one of the Alterable Values (Alterable Value A is equal or
greater than 5)

IF: [Special Object] > Limit conditions > Only one action when event loops

THEN: [Sound object] > Samples > Play sample (select a sound from MMF2’s libraries, i.e. “EXPLOD03.wav”)
THEN: [Create new objects] > Create object > [Boom Object] (create it at [3,12] relative to the “Grenade”
object)

THEN: [Grenade] > Destroy

THEN: [Grenade] > Visibility > Make Object Invisible

THEN: [Displayer String Object] > Change Alterable String (change Alterable String to “BOOOM!”)

Nice explosion, was it? Sure it was. Now it’'s time to wrap it up with these here little fellows, which are

intended to finish what the “Boom” event started:

IF: [Boom Object] > Animation > Has an animation finished? (select the “Appearing” animation)
THEN: [Boom Object] > Destroy

IF: [Grenade] > Pick or count > Have all “Grenade” been destroyed

THEN: [Special Object] > Group of events > Activate (select the “Stand by — Change seats” group)

THEN: [Special Object] > Group of events > Deactivate (select the “Throwing a grenade” group)

And that’s it!

We’'re finally over!

Page 20/21

Take a look at your application — save it, run it and play it! Isn’t it fun? Sure it is! Now go and find
someone who will play the “Glob Wars” game with you. Either that, or you may want to enhance this
game a bit, adding new features, weapons, making either the window size or the frame size bigger,
adding jet-packs and weapon supplies that drop down from the sky... Take it to a whole new level, if you

wish!

Have fun! The Glob Wars Q

Cheers!

Koobare

marchewkowy@gmail.com

RED PLAYER:

EOOOM!
BLUE PLAYER:

Page 21/21

