
Page 1/26

You may not use this tutorial for any other purpose than learning, working or

having fun... In other words: You can use this PDF tutorial for anything You’d like,
as long as it doesn’t involve both a hammer and a squirrel.

marchewkowy@gmail.com

Page 2/26

Hi there, all!

Welcome to another one of Koobare’s little tutorials, teaching you how to effectively and

efficiently use the best multimedia authoring tool ever – Multimedia Fusion 2 by Clickteam! This

tutorial is going to explore a couple of MMF2 activities – such as importing alpha-blended

images from a PNG file, using Edit and Sub-Application objects, making a simple drag’n’drop

system inside your app, and more – in sole purpose of creating an… operating system. Huh?

Sounds weird, right? Can MMF2 even do that? Well, don’t be troubled, since we’re not actually

gonna’ create a real OS, just a simple imitation, a fake one, that can be used in your projects.

What for? Let me explain… And may this be a thorough explanation.

If there’s a single thing that determines whether a game is successful for me or not – it’s the

capacious definition hidden behind the word “immersion”. Heck, sure, playing almost any

game can be quite fun, but until they get me immersed – and I mean REALLY immersed – it’s

just another computer game, one of the thousands I’ve played in my life. “Nothing special here,

bub, just finish it already and let’s move on to another time-eater” – I think to myself. But… Boy,

let me tell ya’ what happens if a game really gets under my skin… Once the “immersion factor”

kicks in – it’s like eating a tasty pie with extra crème and a sugar cherry right on top of it. For

the duration of those few minutes every week, I become the savior of The Swords Coast in the

classic “Baldur’s Gate”, the commander of the last line of global defence in “UFO: Enemy

Unknown” (known also as “X-Com: UFO Defence” in some countries), the super-spy in

“Splinter Cell”, the mysterious force-user from “Knights of the Old Republic”, the… Well, you got

the picture. It’s not just a “pleasant gaming time”. It becomes an experience. Take a great story,

set it in an interesting world – and then add a couple elements that truly make the player

involved, either by challenging him in a way, or making him FEEL that he’s a part of what’s

happening on screen. As far as I’m concerned – if you’ve done it right, you’ve got an instant

classic. And don’t be fooled that I’ve only listed big-budget, big-company titles here – it’s for

easier recognition, so that all of you can get the picture. There’s a lot less-known garage- or

homemade titles on my “this game was truly a great experience” list too.

You know what was the single most memorable element from “Jagged Alliance 2” for me? Err,

besides the overally great gameplay, that is. It was the laptop. The fact that all the main

management duties were done on a fully controllable, in-game laptop with an operating system

that looked like a crossover between older versions of Windows and Mac. The fact that I could

receive e-mails from Enrico Chivaldori, the man who hired my little team of mercenaries,

containing either useful information or just complaints about how slow my progress is. The fact

Page 3/26

that I had to both hire my soldiers and order guns via the internet – and wait for their arrival

afterwards. All of this was pretty brilliant – in a simple way, they’ve got me involved. I was

sitting there – on the tropical island of Arulco – waiting for a shipment of grenades from Bobby

Ray’s Guns & Ammo, checking my e-mails and intelligence data on the finest laptop the world

has ever seen. It was just that way cooler than the usual “four buttons and a slider” game

interface. Heck, in “Jagged Alliance 2.5: Unfinished Business” they’ve even made the laptop a

part of the scenario, since – after your chopper crashed in the mountains – you had to look for

a battery to make it work again! How cool is that?

Yup, you most probably know where I’m going with this by now. Our OS – the one we’re going

to create – will be a system that the player has to operate to get some important in-game data.

The story goes like this… Our hero is a trouble-magnet, a small-frame reporter for a local

newspaper, just trying to make a living. Think Peter Parker – but without the tights, spider-

sense and any other superpowers. Accidentally, our guy – let’s say his name is Jeremy –

discovers a dark plot, a mysterious organization trying to take over the world, disguised as a

successful computer company, specialized in creation of multimedia authoring software. In a

typical style of a classic point’n’click adventure game, Jeremy finally finds the headquarters of

the evil organization – a mutant factory (yaarp!) – and tries to break in. Unfortunately, the door’s

locked with a password and this time combining a crowbar with chewing gum and latex gloves

won’t solve the puzzle. The player has to order Jeremy – by clicking on a nearby computer – to

search for the password or a clue. And here’s where our OS – I’ve named it M4OS – kicks in.

Our player has to log in as a guest and – not having any other options, since file-browsing is

restricted to the administrator’s account only – check the e-mails dumped into the system’s

recycle bin. In which – of course – the password to the mutant lab is ludicrously waiting to be

discovered.

Sounds easy, right? Sure it does, since it’ll be easy – if you know your MMF2 basics, you

should do just fine. If not – whatcha’ waiting for, download the “MMF2 Interface Guide” from

Clickteam’s website and learn why Multimedia Fusion 2 is the best tool in it’s category! And

hurry up, private, we don’t have all day!

To sum it all up – here are some core features of the project we’re going to complete:

 We’re going to create a good lookin’ imitation of an operating system. It’s gonna’ be

blue, it’s gonna’ have some smooth fade-in’s and it’s gonna’ be called “M4OS”. The

“M4” stands for… Well, nothing.

 Our OS will consist of a loading screen, login screen and the main desktop.

Page 4/26

 There will be four icons on the main desktop – clicking on one of them will open the

recycle bin, clicking on any other will return an error.

 All icons can be moved around the screen via the drag’n’drop method (by holding the

right mouse button) – we’re also gonna’ add a funny “jiggle” effect, that’s going to shake

our icons a bit, if – by any chance – any of them are overlapping.

 If you have any problems with this tutorial, or notice that there are some

mistakes present, please, contact me and I’ll do my best to help you and

replace all the errors with correct information.

 Contact me at: marchewkowy@gmail.com

Part I: Setting up the application.

Now, let’s get to work! Open Multimedia Fusion 2, create

a new application and be sure to save it onto your hard

drive (as I always mention: it’s a pretty good thing to have

the “Autobackup” option turned on – check your

“Preferences” window). Now, go to your application’s

Properties window (if it didn’t open up by itself, right

click on your application’s name in the workspace toolbar

and choose “Properties” from the drop-down menu).

Select the Window tab (second from the left, the one with

the little computer screen). Set the window size to

800x600. Higher resolutions would make our OS look a

bit more realistic, but I’m pretending that the main game –

the adventure game into which our system is incorporated

– is made for 800x600. Now, make sure that the “Heading

when maximized”, “Menu bar” and “Menu displayed on

boot-up” options are off, while the “Change Resolution

Mode” option is on. If you need any visual assistance,

take a look at the screenshot to the right.

Page 5/26

When that’s done, it’s time to create our frames. We’re gonna’ need seven frames in this

project: one for the loading screen, one for the login screen, another one for the desktop, yet

another for the error window, one for the recycle bin and two for e-mails that Jeremy will find

waiting in the trash. Create them now, either by clicking on the next available frame number in

the storyboard editor or choosing Insert > New Frame from the main menu. We’re going to

change the frame sizes of the last four frames later on – as for now, leave them all at 800x600.

Do we really need as much as seven frames to complete this project? Nope. You could as well

put it together with six, five, four, three, two, or even just a single frame. I’m using seven

separate frames to make it a bit easier for all the MMF2 newcomers. Once you’re done with this

tutorial, feel free to explore the other possibilities, try to make all of this work exactly the same

with a lower number of frames. And if you’ll need any hints – don’t hesitate to drop me a mail.

Part II: The loading screen.

Let’s change the title of the first frame to “loading” (fastest way: right-click on that frame in the

Workspace toolbar and select “Rename”). Once that’s done – jump to the Frame editor.

So… Here we are, gazing at a blank, white space, eight hundred pixels wide. What do we need

to change this freshly created frame into a true (well… almost true) OS loading screen? Some

kind of a background picture and a Counter object (acting as our loading bar). Oh, and we’re

also gonna’ place two additional active objects without a real purpose, just for show. If it was

one of my earlier tutorials, I’d just suggest to import them all from a previously prepared frame.

But, heck, not this time! In this tutorial you have to create all the objects yourself.

Let’s start with creating the aforementioned background picture.

Create a new Backdrop object, double-click on it to open the

image editor and then select the Import icon (, you can also

press CTRL+O). Now, go to the folder into which you’ve

unzipped the archive that contained this tutorial. Look for a

directory named “graphics” and open it. Seek out the “m4os-

loading.jpg” file, select it and click “OK”.

Click the “OK” button once more when MMF2 asks for import options – everything should be

set correctly and you shouldn’t encounter any problems. Once you’re done – our background

picture should be ready. Position it along the frame’s borders and we’re ready for the next step.

Page 6/26

Now, let’s form our loading bar – create a new

Counter object, place it somewhere in the frame.

Go to it’s Properties window double-check if the first

tab to the left is open. Time to change the values a

bit – set the maximal value to 500, and the minimal

value to 0. Change the display type of the counter to

Horizontal bar, with a count beginning from left,

filled with solid color. Finally change the bar’s color

to white. If you need some assistance – check the

screenshot to the right.

OK, now it’s time to create those two additional actives that I’ve mentioned earlier. Create a

new Active object. Click the import button and select the “alphablended.png” file this time.

When the Import Options window appears, don’t click “OK” yet! Select the “Import selection”

option (don’t get it confused with the “Import as selection” one) and the click on the “Select”

button. Draw (by holding the left button) a rectangle around the “M4OS” little logo in the upper

left part of the picture – you don’t have to be too precise, just try to keep the whole logo inside

your selection. Once that’s done, click OK. Here, take a look at the screenshot below, if you’re

having any problems with keeping up:

Got it? Great! Let’s move on to the image editor, then!

Page 7/26

Firstly, either click on the cropping icon () or press Ctrl+K on your keyboard to slice away all

the unneeded free space. Once that’s done, notice that the “M4OS” logo has been imported

onto a clean, transparent background – you didn’t have to clean any white or gray pixels

yourself. Also, notice that all the edges of our logo are pretty smooth – you won’t find even a

single ragged pixel there! Why’s that?

Well, the PNG file from which we imported this little pack of pixels was an alpha-blended

image. That means that, besides the picture, it contained an alpha mask – little bits of info

telling your PC which of the pixels of our image should be semi-transparent and to what

degree. The ability to use alpha-blended images in all backdrops and actives is a great new

feature of MMF2 (one of the most important if you ask me) and I’m pretty sure that you’ll find it

useful someday too. As for now – just remember that alpha-blended images can look really

great on any background and you can use them for both smooth-edged objects and stunning

visual effects. Oh, and for a lot more things too, but we’ll get to that much, much later, in

another tutorial.

 Please note: since some of the objects use alpha channels, a feature that is

 unavailable in Games Factory 2, TGF2 users should use basic library

 objects or create their own graphics instead.

OK, when that’s done, let’s move on and create the second active – the “loading” sign. Do it in

the same way as we created the “M4OS” logo, it’s even in the same file – “alphablended.png”.

The only difference now is that you have to draw the selection rectangle around another part of

the picture, bit to the right. Import the “loading” indication into a new active, click “OK”, and we

can move on.

Now, since we already have all the needed objects in our scene, let’s finish all the remaining

tasks here and wrap it all up. Select the “M4OS” active and rename it to “little_logo”. Renaming

objects with easily recognizable names is pretty important, since it can save you a lot of time.

Now, go to the Properties toolbar and slide your view all the way to the “Transitions” section.

Let’s set up a nice, smooth Fade in transition, shall we? Open up the Transition set-up window

(click on the “Edit” button, by the “Fade in” segment). Choose the “Fade” transition from the

drop-down list and set it’s duration to 4.74 seconds. Click “OK”.

Page 8/26

Do the same for the second active, changing it’s name to “little_loading”. But this time choose

another Fade in transition, named Bands, and set it’s duration to 3.73 seconds. I’ve also

changed our Counter’s name to “loading_counter” – so that I’d never forget why it’s there.

Once you’re done – it’s time to place all these objects in correct positions. You’ll also have to

stretch the loading bar, so that it’s as wide as our frame. Here, have a look at how I

repositioned all of this… And feel free to modify this in any way in your own project:

Looks nice, doesn’t it? Time to make it work!

Save your project and open the Event Editor. If you’re new to my tutorials, let me introduce

you to my event-recording system. If you know it already – just skip this big ol’ frame below:

Koobare’s MMF-to-paper coding system

 IF (Condition): [Object for the condition] > Condition group > Condition

 THEN (Action): [Object for the action] > Action group > Action

Page 9/26

Seems pretty simple, right?

All the conditions are marked in red, while actions are written in fancy blue.

Object names are always put in [square brackets].

The final condition/action is always in Italic.

If we’ll have a multi-condition event, then it’ll be like this:

 IF (Condition 1): [Object for condition 1] > Condition group 1 > Condition 1

 IF (Condition 2): [Object for condition 2] > Condition group 2 > Condition 2

 THEN (Action): [Object for the action] > Action group > Action

Whereas a multi-action event looks like this:

 IF (Condition): [Object for condition] > Condition group > Condition

 THEN (Action 1): [Object for the action 1] > Action group 1 > Action 1

 THEN (Action 2): [Object for the action 2] > Action group 2 > Action 2

 THEN (Action 3): [Object for the action 3] > Action group 3 > Action 3

If you’ll have to input anything by keyboard, it will be indicated by coloring the text

green and using < angle brackets >, like this:

 < Set the Global Value A to 32 >

Additional comments, instructions and info will be put in << double angle

brackets >>, using a different color:

 << Select any wave sound from the MMF2’s sound library >>

From time to time I’ll also use this style to throw in some extra tips about MMF2.

All you have to do is to go step-by-step through all the listed events and keep

one eye on your Event Editor, and the second one on this tutorial… Not much

philosophy in any of this.

Page 10/26

Making it work…

The idea is pretty simple – every 4/100 of a second our application will add a random number

(from 1 to 7) to the counter. When the counter gets to 500 – the app jumps to the next frame

and we can move on.

Firstly, let’s create this event:

IF: [The Timer Object] > Every

 << Set the timer to 4/100 of a second >>

THEN: [loading_counter] > Add to Counter

< input: Random(6)+1 >

Notice that the “Random(6)” expression would give you a random number from 0 to 6. Adding

“+1” to it’s end ensures us that it’ll return a value between 1 and 7. This is a thing worth

remembering, since generating random numbers can be essential in a lot of projects.

Now, it’s time for the second event:

IF: [loading_counter] > Compare the counter to a value

<< check if it’s greater or equal than 500 >>

THEN: [Storyboard Controls] > Next frame

And that’s it! Well… At least for the first frame. There’s plenty more to do if we’re to finish this

OS imitation, so don’t get lazy!

Part III: The login screen.

Let’s move on to the second frame. We’re gonna’ need three objects here – one of them being

the Edit object. Firstly, create a Backdrop object, which will act as our background image, and

rename it to “login_backdrop”. Open it up, import an image from the “m4os-password.jpg” file

and position the whole thing in the frame by dragging & dropping. Secondly, create a new

Active object, rename it to “little_helper” and set it’s Fade in animation to a 3.61 seconds

Fade. All we need to do now, is to open it up and import the line saying “Input password and

press enter. Type in FROGGY to log in as a guest” from the “alphablended.png” file (it’s right

below the two graphical signs we imported earlier).

Page 11/26

Got it? Great! Time to create the aforementioned Edit object. But… Wait, what exactly IS this

Edit object I’m talking about? Here, let’s take a look into the Multimedia Fusion 2’s User Manual

to help us out with this:

“The Edit object is a basic text editor that can load and save text files; cut, copy, and paste text;

and be sized and positioned to suit your needs. You can also include scroll bars if you wish to

limit the size of your Edit object, and borders to enhance its appearance. You can use Edit

objects to create user entry zones and input fields, and you can define your Edit objects as read-

only so that they only display text. The Edit object only handles plain text with no formatting”.

Yup, you’ve heard the man: we can create entry zones and input fields with this object! Ain’t

that convenient? Sure it is.

Let’s return to our work then. Create a new Edit object and

rename it to “input_box”. Now, let’s take a look at it’s

properties… Jeepers, there’s quite a lot of them! Don’t worry,

though – we’ll get it right in no time. Firstly, make sure that

both the Tab stop (this will ensure that our Edit box will be

selected if someone presses the TAB key) and Password

(this will “code” all typed in letters, disguising them as dots)

settings are set on. Secondly, turn off both the Border and

3D Look boxes. Last thing: set the case modification to

“Turn to uppercase” and try to set a background color that

will be either the same or almost identical to the one that I’ve

selected (RGB = 44, 98, 116).

When that’s done, we can move on to the next tab – “Text Options” (third from the left). Here

we can change our input field’s font. Let’s set it to Arial, size 18, Bold, white.

Got it? Great! That means we’re almost done with

yet another frame! Make sure that you reposition

all the objects so that they look all great n’ finicky.

Oh, and let’s not forget about resizing our

“input_box” to the size suggested by the

background image. You can check how I’ve

positioned all of this by looking at the screenshot

to the left. Looks nice, doesn’t it?

Page 12/26

Making it work… once again.

Once again, it’s a pretty simple set of rules – and, once again, it’s all playing out in just two

events. The first one determines what happens if the player has entered a correct code

(“FROGGY” – the password needed to log in as a guest) and then pressed ENTER. The

second one determines what would happen if the ENTER key was punched while the given

password was incorrect.

So, let’s create the first event:

IF: [Keyboard & Mouse Object] > The Keyboard > Upon pressing a key

<< press ENTER on your keyboard >>

IF: [Special Object] > Compare two general values

<< check if expression Edittext$("input_box") is equal “FROGGY” >>

THEN: [input_box] > Destroy

THEN: [Storyboard Controls] > Next frame

Yeah, I know that “Edittext$("input_box")” looks scary and it won’t be too easy to remember by

hard… But, ya’ know, you don’t really have to remember it! How’s that? Well, in MMF2 there’s

that sweet “Retrieve data from an object” button, which enables you to browse for the data

you’re interested in, retrieve it from specified objects and don’t worry about any memorizing at

all. All you’d have to do, is to click on the aforementioned button, right-click on the “input_box”

object and select the “Get Text” command from the drop-down menu… And – voila! – you’ve

got the same expression waiting for you!

You’re most probably also wondering why the heck have I ordered our app to destroy the

“input_box” object before jumping to the next frame, right? Well, we’re gonna’ add some frame

fade-in’s and fade-out’s bit later on, and Edit objects don’t usually go too well with them.

OK, let’s cut the chit-chat and continue with our programming part… Here’s the event played

out when the player has entered an incorrect password:

IF: [Keyboard & Mouse Object] > The Keyboard > Upon pressing a key

<< press ENTER on your keyboard >>

IF: [Special Object] > Compare two general values

<< check if expression Edittext$("input_box") is different than “FROGGY” >>

THEN: [Sound object] > Samples > Play sample

 << Select some kind of a short “error” sound from the MMF2’s sound library >>

Page 13/26

And that’s it! Yup, we’ve just wrapped up frame number two…We’re getting closer to the end

with each minute! I guess that you’d just love to jump right into frame number three, right? Well

then, guess again, private, since we have to go back to the Storyboard editor for a sec or two

before that…

Part IV: Back to the storyboard...

Open the Storyboard Editor. There’s not too much to accomplish here, I just wanna’ add

some Fade in and Fade out effects to a couple of frames, rename some of them and change

the size of the last three. A true “piece of cake” situation, if you ask me.

Let’s start with the easiest and least entertaining thing to do – renaming. As I said before –

renaming things isn’t as useless as it seems, if you’ll ever wander off to the “big projects” area

you’ll instantly know what I’m talking about – searching through hundreds of frames without a

real name can give you a real headache. Believe me – frame names like “Frame 51” and

“Frame 61” will slow you down, making you gaze at the thumbnails in the Storyboard Editor,

thinking “why the heck do they look so similar?!”. Thus – renaming everything is a time-saver

and a great habit.

OK, back to work. We have 7 frames in our storyboard. The first one is named “loading”... What

about the rest? Let’s rename the second one to “login”, the third one to “desktop”. Frame

number four should be named “error”, number five should be “recyclebin”. Number six and

seven? Change their titles to “email1” and “email2”.

Got it? It’s time for the Fade in’s and Fade out’s,

then. Frames “loading”, “login” and “desktop”

should all have the Fade transition effect, with it’s

duration set to 2.0 seconds. Oh, and we want all

of them to fade to/from a solid color, black to be

exact. To set the fades, just open the Transition

set-up window, by either left- or right-clicking on

the fade in/fade out buttons (, they are located

to the left from the frame size in the Storyboard

Editor’s layout) and then choosing “Transition

setup” from the drop-down menu.

Page 14/26

Let’s move on to the last three frames. Change the size of the frame named “error” to 400x250

pixels, then change frames “recyclebin”, “email1” and “email2” to 465x310. Once that’s done,

set the fade in transition effect for “email1” and “email2” to Zoom, from background, with the

duration of 1.1 seconds.

Got it? Great! Here, have a look at how my Storyboard Editor looks like at this point of the

tutorial… If you’ve followed me closely enough, yours should look the same:

As you can see – we already have something there, but there’s still quite a lot to do. To sum it

up a bit: we need to create all the popping out windows (the error window, the recycle bin and

two e-mails) and the main desktop, with all it’s drag’n’droppable icons and stuff like that. We’re

gonna’ leave the desktop for later, and move on to frames 4 to 7 right now.

Page 15/26

Part V: Errors, recycle bins and e-mails.

It’s all about the greater good.

This one is gonna’ be real easy. Open the “error” frame. Create a new Backdrop object,

rename it to “error_backdrop”. Open it up, import an image from the “errorwindow.jpg” file and

position the object by dragging & dropping. Got it? Well, that means you’ve just finished this

frame. Wasn’t that quick? Sure it was.

To be totally frank with you – we don’t even

really need a frame for this. This error window

could be easily created by using an Active

object inside the “desktop” frame. So why use a

whole frame for this? Just for learning purposes

– it’ll give us an occasion to play with the Sub-

Application object a bit more. Yup, it’s all about

the “greater good”. And if you’ve seen Edgar

Wright’s “Hot Fuzz” you surely know that the

“greater good” is an important thing, right?

The recycle bin.

Now, moving on to the next frame – time to set up our own recycle bin… Once again, create a

new Backdrop object and import an image into it – this time from the “recyclebin.jpg” file.

Once that’s done, open up the Event editor. We’ll need just two events here (what’s with that

“just two events” already? Geez, everywhere I go, all I need are just two events…):

IF: [Mouse & Keyboard Object] > The Mouse > User clicks within a zone

<< Left button, single click >>

<< Select a zone around the first white button from

the top – the one with the “password” e-mail >>

THEN: [Storyboard Controls] > Next frame

If you have any problems with understanding which

“button” do I mean – take a look at the little screenshot

to the right. My zone’s size & position was “(31,124) to

(430, 156)”, yours may vary a bit.

Page 16/26

And here’s the second event:

IF: [Mouse & Keyboard Object] > The Mouse > User clicks within a zone

<< Left button, single click >>

<< Select a zone around the second white button from the top – the one

with the “RE: flies” e-mails >>

THEN: [Storyboard Controls] > Jump to frame

<< Click on the “Use Calculation” button >>

< input: 7 >

Done? Time to move on to the “email1” frame.

The first e-mail.

You know the drill – create a new Backdrop object, import an image from the “mail1.jpg” file,

then go the Event editor. We want this e-mail to close and return to the recycle bin if the player

clicks with the left mouse button:

IF: [Mouse & Keyboard Object] > The Mouse > User clicks

<< Left button, single click >>

THEN: [Storyboard Controls] > Previous frame

And here’s the same for the right button…

IF: [Mouse & Keyboard Object] > The Mouse > User clicks

<< Right button, single click >>

THEN: [Storyboard Controls] > Previous frame

Don’t be too troubled if the whole

“previous frame”, “next frame” business

becomes confusing, it can be a bit tricky

to follow. It’ll soon become pretty clear to

you, though, once we move on to the

Sub-Applications… You’ll see that all of

this has a lot of sense when introduced in

due time. Now, let’s finish up the frame

for the second e-mail – pretty much the

same as this one.

Page 17/26

The second e-mail.

Import the “mail2.jpg” file into another Backdrop object. “The flies have mutated into something

weird, I’m not totally sure if this is what we wanted” – it says. Well, tough luck, happens if you

experiment with gamma rays and mutation… Don’t do that at home, kids! Never know when

you’re gonna’ transform into Hulk or – and this would really suck – a flying banana. Anyways,

let’s jump to the Event editor and create these two little thingies:

IF: [Mouse & Keyboard Object] > The Mouse > User clicks

<< Left button, single click >>

THEN: [Storyboard Controls] > Jump to frame

<< Click on the “Use Calculation” button >>

< input: 5 >

And here’s the second one…

IF: [Mouse & Keyboard Object] > The Mouse > User clicks

<< Right button, single click >>

THEN: [Storyboard Controls] > Jump to frame

<< Click on the “Use Calculation” button >>

< input: 5 >

Pretty easy, right? Oh, too easy, even? Not exactly the thrill you’ve been looking for? No sweat,

we still have to create the whole “desktop” frame, remember? And this one’s gonna’ be a bit

tougher to beat.

 Scenario idea:

Jeremy got to Tobias’ workroom – in which the computer with the password was

located – by a ventilation shaft. When he was jumping out of it, he accidentally

tripped on something and heard a massive “bdong!” sound. Once he puts the

lights on, he realizes what he has done – he crashed the whole computer,

smashing it to pieces! Now the player has to gather up all the misplaced elements,

look for some spare parts in one of the nearby cabins, and then join them together

to make the workstation work again, allowing him to retrieve the password.

Page 18/26

Part VI: The main desktop.

Open up the “desktop” frame, and let’s start importing! Firstly, as usual, we’ll need a nice good

ol’ Backdrop object to cover the whole frame. Create one, rename it to “main_backdrop” and

import “m4os-desktop.jpg” into it. Once that’s done, let’s create four Active objects and

transform them into our icons.

Let’s start with the first one – create an Active object and rename it to “icon_files”. Load an

image into it – choose the “alphablended.png” file, then draw a selection rectangle around the

second icon from the left (the one with the heart symbol), making sure that you select not only

the icon, but also a bit of the white space under it. Like this:

So, why the heck are we selecting so much blank space at the bottom of the icon…? ‘Cause,

dear Watson, it isn’t actually blank! All the icons have their names beneath them (in this case:

“John’s files”) – we just can’t see them yet (that’s because I’ve used a white font, while MMF2

shows PNG transparency as white). Just click “OK”, then crop the unused space (Ctrl+K) and

you’ll see what I mean.

Once you’re done with the first icon, position it somewhere in the frame (I’ve placed it at x=57,

y=319) and get to the next one… Create a new active, change it’s name to ”icon_bin”, load the

first icon to the left from the “alphablended.png” file (the one with the recycle symbol), drop it

somewhere and make sure that it does not overlap the “icon_files” object.

Page 19/26

Next on the list is “icon_drives” object – with the third icon from the left (the one that looks like a

flower), followed by “icon_programs”, an icon with a dog’s pawn imprinted on it. After that’s

done – we’ll have to add all these objects to a shared group – assign a shared qualifier – so

go to the Properties toolbar, open up the Events tab (it’s the second one from right), and add all

our icon objects to the “Bonus” qualifier group.

Once you’re done with the icons, it’s time for…

…Sub-Applications.

OK, so what are these thingies exactly? Sub-Application objects enable you to display another

frame or app in your main application, giving you enormous power over what happens in your

game and how it all works out. You can, for example, easily create a drag’n’droppable inventory

that is displayed inside your game, covering – let’s say – the left side of the screen, while you

can still play on the right side – similar to the inventory window in Blizzard’s “Diablo”. As it is

said in Multimedia Fusion’s 2 manual:

“The Sub-application object allows you to insert a Multimedia Fusion 2 application (.MFA or

.CCN) into a frame in another Multimedia Fusion 2 application. It can be also a frame of the same

application. The inserted application can function independently of the main application or can

share data and be controlled by the main application.”

Seems easy, right? Let’s see it in action, then. Create a new Sub-Application object and

place it in your frame. Go to it’s Properties toolbar, change the “source” to “frame from this

application” and select frame number 4. Now,

rename this object to “error_subapp” and place

it outside of your frame (I’ve placed it at these

coordinates: x=150, y=-260). As I said before –

we didn’t actually need a Sub-Application for the

error window, since it would perfectly work even

if we used a just single active for this – but I’ve

decided to use it nonetheless, just for the sake

of learning & practice (and remember: “practice

makes perfect”… or something like that).

Now, create another Sub-Application object and rename it to “bin_subapp”. Once again we’ll

have to move it out of our frame (I’ve placed it at x=560, y=-320, but it doesn’t matter where

Page 20/26

you put it, as long as it’s outside of our workframe). Change the “source” option of this object to

to “frame from this application” and select frame number 5. Note that you can both use

frames from your main app and other applications when playing with a Sub-app – this may

come in handy someday, when you’ll be working on your own big project. It’s also worth to

keep in mind that you can use as many Sub-apps as you’d like, it’s not just “one per frame” –

as you can see, we’re using two in this tutorial – which means that Sub-apps can be really

handy when designing your user interface.

Now, once we’re done with all that, it’s time to move on to the Event editor and make all the

gears work together.

Time for some coding!

At last! Finally there’s gonna’ be a little more action here, not just the tedious “two events to

make it work”, that’s been haunting me since last weekend. Anyways, let’s get to it, soldier!

Create all the events, one after another, and we’ll have our M4OS working in no time!

1) Let’s start with an event that will become a basis for our simple (yet, a bit imperfect, to be

honest) drag’n’drop system. This is gonna’ be a really undemanding thingy, you could achieve

a better effect by using Alterable values and changing them from 0 to 1 when player starts to

drag a single icon… But this would be a bit more complicated system, demanding more time

and explanations. Anyways, let’s do this the simple way:

IF: [Mouse & Keyboard Object] > The Mouse > Check for mouse pointer over an object

<< Select the “Group.Bonus” qualifier >>

IF: [Mouse & Keyboard Object] > The Mouse > Repeat while mouse-key is pressed

<< Right mouse button >>

THEN: [Group.Bonus] > Position > Set X coordinate

< input: XMouse >

THEN: [Group.Bonus] > Position > Set Y coordinate

< input: YMouse >

THEN: [Group.Bonus] > Visibility > Change ink effect

<< Choose: Monochrome >>

It’s a good thing to memorize the “XMouse” and “YMouse” expressions – they’re both pretty

simple, yet very useful, giving you the possibility to check and compare the current X and Y

positions of the mouse pointer. Also, note that all icons change their ink effect to monochrome

while they are being dragged.

Page 21/26

2) Here’s another event that will help us with our drag’n’drop system – this one is checked true

and executed when the player does not hold the right mouse button. If you’re not sure how to

negate an event – right-click on it and choose “negate” from the drop-down menu:

IF: (NEGATE) [Mouse & Keyboard Object] > The Mouse > Repeat while mouse-key is pressed

<< Right mouse button >>

THEN: [Group.Bonus] > Visibility > Change ink effect

<< Choose: None >>

3) Here comes number three: if our player

clicks on the big “M4OS” logo located in

the upper-right side of the screen, all four

icons are automatically arranged in a row:

IF: [Mouse & Keyboard Object]

> The Mouse > User clicks within a zone

<< Left mouse button, single click >>

<< Select a zone around the “M40S” logo –

See the screenshot to the left >>

THEN: [icon_files] > Position > Set Position

<< At actual X, Y coordinates >>

<< Set coordinates: x=253, y=57 >>

THEN: [icon_bin] > Position > Set Position

<< At actual X, Y coordinates >>

<< Set coordinates: x=353, y=57 >>

THEN: [icon_drives] > Position > Set Position

<< At actual X, Y coordinates >>

<< Set coordinates: x=153, y=57 >>

THEN: [icon_programs] > Position > Set Position

<< At actual X, Y coordinates >>

<< Set coordinates: x=53, y=52 >>

4) Our fourth event will add a small “jiggle” effect to this whole thing. Our icons will shake a bit

if – by any chance – any of them are overlapping. This is a lot simpler than it sounds:

IF: (NEGATE) [Mouse & Keyboard Object] > The Mouse > Repeat while mouse-key is pressed

<< Right mouse button >>

IF: [Group.Bonus] > Collisions > Overlapping another object

Page 22/26

<< Choose: Group.Bonus >>

THEN: [Group.Bonus] > Position > Set X coordinate

< input: X("Group.Bonus")+Random(25)-Random(25) >

THEN: [Group.Bonus] > Position > Set Y coordinate

< input: Y("Group.Bonus")+Random(25)-Random(25) >

5) Here’s a small appendix to the previous event – if one of our icons is out of the play area (if it

“jiggled out” to far away), it is sent to the middle of the screen:

IF: [Group.Bonus] > Position > Test position of “Group.Bonus”

 << Select “Is the object outside?” – the button in the lower-left side of the window >>

THEN: [Group.Bonus] > Position > Set Position

<< At actual X, Y coordinates >>

<< Set coordinates: x=396, y=280 >>

And that’s it for out drag’n’drop system! Time to get those Sub-apps working…

6) Now, let’s create the event I usually start with – the traditional “Start of frame” event, which

will reposition our Sub-apps in the middle of the display and make them hidden. We could as

well get our Sub-apps to their positions in the Frame editor, but I’ve decided not to, just to show

you two things… That: a) Sub-apps can be easily repositioned on runtime, which makes them

even more practical; b) You can move them out of your frame in the Frame editor and then

easily get them back in the middle of the screen with just a single event, which makes it easier

to edit levels and operate on objects that would be otherwise not accessible, hidden behind

your menu / error / inventory etc. windows.

IF: [Storyboard Controls] > Start of frame

THEN: [error_subapp] > Visibility > Hide

THEN: [bin_subapp] > Visibility > Hide

THEN: [error_subapp] > Position > Set Position

<< At actual X, Y coordinates >>

<< Set coordinates: x=188, y=163 >>

THEN: [bin_subapp] > Position > Set Position

<< At actual X, Y coordinates >>

<< Set coordinates: x=156, y=125 >>

Once your done, let’s make this event the first one on the list – just grab it’s “number box” and

drag it upwards, from the sixth position to numbero uno.

Page 23/26

Here’s what we should have by now (note that it doesn’t have to be identical…):

7) Time for the lucky number seven: this event will control what will happen if our player clicks

on the “icon_files” object – the “error_subapp” object will be displayed, and the “bin_subapp”

object will be hidden:

IF: [Mouse & Keyboard Object] > The Mouse > User clicks on an object

<< Left mouse button, single click >>

<< Choose: icon_files >>

THEN: [error_subapp] > Visibility > Show

THEN: [bin_subapp] > Visibility > Hide

8) Here we have the same two actions, the only difference is that this happens when

“icon_drives” is clicked, not “icon_files”:

IF: [Mouse & Keyboard Object] > The Mouse > User clicks on an object

<< Left mouse button, single click >>

<< Choose: icon_drives >>

THEN: [error_subapp] > Visibility > Show

THEN: [bin_subapp] > Visibility > Hide

9) …And here goes the same for “icon_programs”:

IF: [Mouse & Keyboard Object] > The Mouse > User clicks on an object

<< Left mouse button, single click >>

<< Choose: icon_programs >>

THEN: [error_subapp] > Visibility > Show

THEN: [bin_subapp] > Visibility > Hide

Page 24/26

10) Here’s something similar, but a tad different – we’ve got a quick switcheroo when it comes

to actions, since this time it’s the “error_subapp” that plays hide & seek:

IF: [Mouse & Keyboard Object] > The Mouse > User clicks on an object

<< Left mouse button, single click >>

<< Choose: icon_bin >>

THEN: [error_subapp] > Visibility > Hide

THEN: [bin_subapp] > Visibility > Show

11) And what will happen if our player clicks somewhere in the frame when either the error

window or the recycle bin is visible? Yup, they just disappear! Mysterious, huh? Create these

two events, one after another:

IF: [Mouse & Keyboard Object] > The Mouse > User clicks

<< Left mouse button, single click >>

THEN: [error_subapp] > Visibility > Hide

THEN: [bin_subapp] > Visibility > Hide

IF: [Mouse & Keyboard Object] > The Mouse > User clicks

<< Right mouse button, single click >>

THEN: [error_subapp] > Visibility > Hide

THEN: [bin_subapp] > Visibility > Hide

12) We’re almost there, private, so keep it steady and stay focused! Oh, and guess what

happens when you press Escape on your keyboard…?

IF: [Mouse & Keyboard Object] > The Keyboard > Upon pressing a key

<< Press: ESCAPE >>

THEN: [error_subapp] > Visibility > Hide

THEN: [bin_subapp] > Visibility > Hide

THEN: [bin_subapp] > Jump to frame

<< Click on the “Use Calculation” button >>

< input: 4 >

13) And here’s the last event – just a helper, so that the final fade out can go perfectly…

IF: [Storyboard Controls] > End of application

THEN: [error_subapp] > Destroy

THEN: [bin_subapp] > Destroy

Page 25/26

And that’s it! Mission accomplished! We’re done here, boys & girls! There you have it – a

truly working fake operating system, the ultra-fine M4OS! You can add as many modifications

as you wish, the possibilities are quite endless and only limited by your imagination –

everything, or at least almost everything can be accomplished with MMF2, so think of

something that you’d like to add to this project and just add it! Good luck!

Oh, I’ve almost forgot… Here’s the final shot of my Event editor, just for comparison:

Thanks for your time and see you again soon!

Cheers!

marchewkowy@gmail.com

If you have any questions, suggestions or just need help –

 mail me at marchewkowy@gmail.com

Page 26/26

You have been reading…

Created for Multimedia Fusion 2 & Multimedia Fusion 2: Developer

Always be sure to have your MMF2 up-to-date!

