the Enhancing
E
A A —

Weather effects:

it’s raining!

@ Enhancing the Feel Q@@
File Options Help

‘ .

N Heavy

i rain

Down

Normal speed

Faster speed |

You may not use this tutorial for any other purpose than learning, working or
having fun... In other words: You can use this tutorial for anything You’d like,
as long as it doesn’t involve both a hammer and a squirrel.

Koobare

marchewkowy@gmail.com

Page 1/21

Hi there, all!

Welcome to another one of Koobare’s little tutorials, teaching you how to effectively use the

best multimedia authoring tool ever - Multimedia Fusion 2 by Clickteam! This tiny tutorial will be

a bit different from the ones that I've introduced earlier, as you won’t experience the usual
“create a full game from scratch” approach here. Nope, this time we’ll focus on creating a few
particular game elements that will be ready to implement into your own games and
applications, helping you not only to enhance the gameplay experience for each player that
takes a bite out of your creativity, but also teaching you a few tricks that might come in handy
somewhere in your game development process. If you'll find this tutorial useful, we’ll perhaps
continue with this series later on, supplying you with even more useful tips & tricks for you to

use in your own game projects.

The main purpose of this tutorial series is to teach you how to easily make your game more
interesting to players — how to enhance your game’s “feel” — usually by making your project’s
world seem more real and “alive”. We're going to do this by creating interesting rain, snow and
wind weather effects, a night & day system and other eye-catching elements that not only look
nice, but also are fully controllable on runtime, allowing the game to smoothly change whether
the player will encounter just a few snowflakes or will be struck by a horrific, freezing blizzard.
The particular tutorial that you’re having in front of you right now will cover just the first out of a
whole bunch of topics: with the help of this here tutorial, you're going to learn how to create a

truly working rain effect, with it's angle, density and speed being controllable on runtime!

To do this, we’re going to use event groups, counters, button objects and a bunch of active
objects. You'll see: creating anything with MMF2, even if it seems quite complicated, is always

easier that you can even imagine!

To sum this all up — here are some features of the project we’re going to complete:

e We’re going to create a really good-lookin’ rain effect. Memorize as much of this tutorial
as you can, since we’ll use the knowledge gathered here to create snow and wind
weather effects in the next tutorial from this series, coming out soon enough.

e Our rain effect will use the MMF2’s built-in Bouncing ball movement and will either rain
straight, from top to bottom, or at a slight angle, with both the angle and speed of the
rain being fully controllable on runtime (we’ll use buttons to control this).

e A few additional, bonus game ideas will be introduced here and there, allowing you to

go further with your creativity. | suggest that you run thru the whole tutorial completely

Page 2/21

ignoring them at first, and then try to play with them a bit. Remember: practice makes

perfect, and without practicing newly learnt stuff on your own, you’ll soon forget them!

If you have any problems with this tutorial, or notice that there are some
mistakes present, please, contact me and I'll do my best to help you and

replace all the errors with correct information.

Contact me at: marchewkowy@gmail.com

Part I: Setting up the application.

OK, let's have some fun! Open Multimedia Fusion 2,

2 @6 R 80

create a new application and save it onto your hard

. . . Window
drive (remember that it's always a good idea to stash up “5003380
some copies here and there — | always save my projects Border color | RGB = 255, 255, 25¢
Style...

to a few different files and even make a solid cd-copy

once a week). Go to your application’s properties window (if it didn’t open up by itself, right
click on your application’s name in the workspace toolbar and select “Properties” from the drop-
down menu), and select the Window tab (second from the left). Set the window size to
500x380. This isn’t really necessary, as a standard 640x480 would suit us well too, but |
sometimes have this strange urge to work on windows different than the usual 640x480 or
800x600 sizes... And since I'm the captain of this boat (Ha ha! | always wanted to say this!

Welcome aboard USS Tutorial, trooper!), we’'ll do it my way.

When you're done with that, create our first frame (make it's size identical to the size of our

window: 500x380) and continue to part two of this tutorial.

Part ll: Creating buttons and counters. Setting up the objects.

We all know what we want to do now — we want to create a working and nice looking rain

effect, right? The only problem is that we don’t exactly have anything to work with right now, do

Page 3/21

we? Don’t be troubled, though. You can find all the needed objects in the same pack this little

tutorial was in.

Let’s import (or create) all the needed objects. First of all, make sure that you have the “snap to
grid’ option turned off (check the “view” menu and search for the [sneptoGrid button). Secondly,
find the “raininglibrary.mfa” file, which was packed into the same archive as this .PDF tutorial,
and open it (load it into MMF2). Got it? Superb. Open the first (and only) frame from the library
file. Select all the objects there (hint: press CTRL+A), copy them into your application (note:
some of the objects use alpha channels, a feature that is unavailable in The Games Factory 2.

TGF2 users should use basic library

objects or create their own graphics RaN

instead) and place them in a way, that
will make the “Sky_QB” quick backdrop l
perfectly fit the frame (if you
remembered to check the “snap to grid”
option off, there shouldn’t be any
problems with this). If you have any
problems with this, just take a look at
the visual aid to the right — this is how

your frame workspace should look like.

Got it? Let’'s move on, then!

Now, take a look at the imported objects. We've got two quick backdrops here (one for the sky
and one for the ground), a “raindrop” active object and two actives that will act as our rain
generators (named — mysteriously! - “rain_generator_1" and “rain_generator_2"). The basic
idea is to make the rain generators create raindrops that will fall from the sky and vanish after
hitting the ground. Doesn’t sound that complicated, right? Well, that's because it isn’t
complicated. We'll add a twist or two to this idea (as it was said at the beginning of this tutorial,
both the angle and speed of the rain will be fully controllable on runtime), but after we’ll start
coding it, you'll notice that it is all as simple as it gets. That's just the way MMF2 functions:

enormous power is just a few clicks away!

OK, now, let’s create all the extra objects that will come in handy — that would be seven buttons
and two counters, to be exact. What do we need them for? Both the buttons and counters will
help us control our rain’s properties, making it possible to easily change them on runtime. In
other words: if you’ll want the rain to pour down a bit faster, you'll just have to press the “faster

speed” button, and it will adjust the speed counter respectively. Of course, this method of

Page 4/21

controlling the rain is not meant to be implemented into your games, dear Clicker — this is for
tutorial purposes only, just to show you that the rain’s properties can be easily changed on
runtime! It's best to avoid handing over the weather control to the player — he should feel like
he’s a part of a living world, not it's creator (unless, of course, you're creating a clone of
Bullfrog’s Populous game), so keep in mind that having the weather changing randomly can be

quite an interesting idea! Just like in real life: you never know when it's going to rain!

Having the introduction and a bit of theory behind us, let’'s create those counters and buttons,
shall we? Right-click on an empty space in your Frame editor and select the “Insert Object”
command from the drop-down menu. When the “Create new object’ dialog window will appear,
scroll down to find the Counter object from the object’s list (to make it a bit easier: remember,
that if you'll press the “C” key on your keyboard, the list will automatically scroll to the next

object beginning with the letter “c”), select it, click the “OK” button and then click somewhere in

the frame to create a new counter object. Voila! We have just created our first counter. Let’s set

POINTS OF INTEREST:
Iy THE "SETTINGS” TAB
@ A% D80

Settings
Yalue
Initial Yalue

it up properly, shall we? Firstly, let's make it's display
type “Hidden” — to do this, open the object’s properties

screen (if it didn’t open automatically after creating the

counter, right click on the object and select “Properties”
from the drop-down menu), open up the first tab to the
left (the “Settings” tab) and select “Hidden” from the
“‘Display type” list. Set it's Initial value to 24 and

24@
o 48

999999999

Minimum Yalue

Maximum Value
Display

Type Hidden ‘

Minimum value to 0. After that's done, go to the

“About” properties tab (the first one from right, the one

POINTS OF INTEREST:

THE "ABOUT” TAB

@%'A:E@;‘lg-]\

About x
Mame irection_counter

Icon om
(Help

with the yellow speech bubble icon) and change the
counter's name to “direction_counter” (type it in after
clicking on the “Name” field — use exactly this name, as it
is the one that is used in this tutorial). If you need some
help — take a look at the visual aid to the left and follow

the “points of interest”, indicated by the red arrows.

OK, so we've got the direction counter set up. Would you like 9 u = A & .
1
to know what it does? It basically “tells” the game at which]3'2- " ") "
| |
direction should the raindrops “fall” after creation. If it’s Initial “m m?
Value will be set to 24, th tl th ter's value will b - MMF =
alue will be set to 24, then — until the counter’s value will be
""_ DIRECTIONS ™
modified on runtime — it will “tell” the rain to fall right down. b g
18
Just take a peak at the image to the right — it shows you all o .'250
o TYN L
£z 23. 2.4 gS e

Page 5/21

32 MMF directions in which your objects can move. If you'd like to make an object move at the
direction of the red square (precisely up), just select “8” as that object’s initial direction. If you'd
rather like the object to move in the direction represented by the green square — select “15”.
The yellow one — “13”, the pink one — “31”, and so on. Pretty simple, right? Take a look at the
illustration above once again — knowing it can be really handy when creating a game with MMF,
so try to memorize the way the diagram works and where the direction count starts — “0” is

always to the right, “16” is always to the left.

Now, since the “direction_counter” is done, let's move on and create the second counter —
the one that will be responsible for “telling” the game at what speed the raindrops should fall
down... Right-click somewhere in your Frame editor (try not to click on another object!) and
select the “Insert Object” command. As soon as the “Create new object’ dialog window
appears, scroll down and select the Counter object from the object’s list, click the “OK” button
and then click somewhere in the frame to create a new counter object. And thus we have
another counter in our game/app! Using the tips that I've gave you when we created the first
counter, make the second counter’s display type “Hidden” as well (open up the “Settings” tab
and select “Hidden” from the “Display type” list) set it's Initial value to 35 and Minimum value
to 0. After that's done, go to the “About’ properties tab and change the counter's name to
“speed_counter’. Got it? Great! Our counters have been created then, it's time to have a go

for the buttons.

Create a new Button object (right-click on an empty space in your Frame editor, select the
“Insert object’ command, select the Button object from the object’s list, press the OK button and
click on an empty space in your Frame editor), enter it's Properties workspace (if it didn’t open
by itself, just right-click on the object and select “Properties” from the menu) and select the

“Settings” tab (it's the first one to the left, it usually opens up
=) 2 AR D@D by default). Now, change the button’s text to “Light rain” (just

?:::" . e click on the “Empty” text and input “Light rain” — if you need
L?:ions Light rain g visual guidance, check the image to the left). When that’s
[E g:zb;d;z:a“ done, move on to the “About” tab (first from the left) and
r change this button’s name to “light_button”. The last thing
fcvmm to do here: go to the “Size / Position” tab (second from the

|! left) and change the button’s X Position to 384, Y Position
I to 32, Width to 88 and Height to 22.

Once the first button is created, we’ll create 6 more, as there are going to be 7 buttons in

general. This can be achieved either by creating them all with the “/Insert Object” command, or

Page 6/21

— which will make it easier for us — by using the “Clone Object”’ one. Cloning is pretty simple —
all you need to know about it, is that it creates the specified number of new objects identical to
the one you’re cloning — and yet, they are all different objects, so you can control all of them

separately: changing something in one of them

doesn’t change them all. To clone our button, right-

click on it and select the “Clone Object” command Bowe |7 [oK)
from the drop-list. A new dialog window should Columns |1 -
appear. Set the number of rows to 7 and the Row Row Spacing 'rm— @
Spacing to 10 pixels (if you need visual guidance, Column Spacing |0 =]

take a look at the image to the right). Click “OK”.

The screenshot to the right shows what you should have there by now: T
seven identical buttons in a column, separated by 10 pixels of space. Right- IR

click on the second one of them (counting from the top, it should be currently T
named “light_button 2”), and select the “Edit” command (unless you have lightifain
changed that in MMF’s preferences, you can access the “Edit” window by T

double-clicking on an object). Set this button’s text to “Heavy Rain” and click Light rain_ |

Light rain ‘

the OK button. After that’s done, right-click on that object again, but this time
select the “Rename” command and rename this button to “heavy_button”.
Note that both the “Rename” and “Edit’ commands change properties of the

object that can be also changed via the Properties toolbar (in the “Settings”

and “About’ tabs, to be exact).

Two down, five to go. Using the knowledge that you’ve just gained, set up all the remaining
buttons by changing their text and renaming them. Here’s how you should do this (the names

below the buttons are what you should rename the buttons to):

Down ' | Right _' Left ' Mormal speed| Faster s_peed_'

down_button right_button left_button normal_button fast_button

To make it out as words: you should take the third button (counting from the top), set it’s text to
“Down” and rename it to “down_button”. Then, you should take the fourth button from the top,
set it’s text to “Right” and rename it to “right_button”. When that’s done, select another one...

And so on, and so on.

You get the picture, right?

Page 7/21

When all your buttons are set up correctly, we can continue. If you haven’t done that before,
you may consider dragging those two counters out of your frame (it's not necessary, but |
personally prefer to keep any hidden counters out of the playframe — | usually create them a
few millimeters out of the frame’s border, just to keep everything well organized).

You can take a look at how the frame should look like, here:

e R R e e e Ly & & e

Light rain

Heavy rain

Right

didi

1]
1
L]
1
:
1]
L]
]
L]
1]
: Down
]
1
1
L]
.
1
.
3

Left

MNormal speed .

Faster speed

OK, we’re almost at the coding part. The last thing we have to do before getting there is setting
up preferences of all the previously imported objects. It may not be as interesting and fun as

coding, but it’s a thing that you just have to do to keep everything working properly.

Setting up the “raindrop” object

Firstly, select the “raindrop” object (it’s that little blue thingy — if you’ll have any problems with
finding it on the frame, just use the objects list, left of your main workspace) and open it's

Properties screen (if it won’t open by itself, right-click on the object and select “Properties” from

the drop-down menu). Now, in the “Display” options tab, set the Fade Out transition to Back, at

Page 8/21

i‘%%@@

Display Options

[v¥ wisible at start
Background options
¥ save background

- [R
Ink Effect

[v¥ Transparent

Ink Effect None

7 anti-aliasing
Transitions

Fade In None ?
Fade Out Back

0.11 second and the Open (Scrolling) setting - this isn’t
really necessary, but will add a nice “splash” effect when a
raindrop will touch the ground, and thus be destroyed. If you
require visual guidance, check the nifty little image to the left
(the same procedure as before: look for the red arrows to

point you in the interesting direction).

Using animated transition effects (fade ins and fade outs) can

sometimes make a great visual difference, making your game

look smoother, nicer and generally better — and it's a great way to save up time too, since you

don’t have to draw all those fadings frame by frame, you just pick the fade you're interested in,

apply some settings, and — Voila! — Its ready, operational and really nice-looking. The only

disadvantage of using transitions is that they can sometimes make your application work a bit

slower on older computers — but usually, unless you’re working on a medieval PC with bats and

spiders living in its interior, the problem shouldn’t even exist.

Once youre done with the transitions, go to the
Movement settings tab (third from the left, the one with
the running little man). Select the Bouncing Ball
movement from the movement type list — don’t worry, we
won'’t create a “bouncing rain” of any kind, we’re using this
movement only because it’'s pretty easy to configure and
you really can do some interesting stuff with this. After
selecting the movement type, set the Initial direction of
the movement to 24 (down). Set the movement’s Speed
to 35 (this will be the initial speed of our raindrops, we'll
modify this on runtime), Deceleration to 0 (we don’t want

the rain to slow down over time, do we?), set the Number

:%~ﬁ~&»ﬂ@@

Movement

Movement Movement #1 ?
Type -'!:ﬁﬁouncing al
Initial direction | 24

[Try Movement]
Speed
Speed 35 @
Deceleration 0 @

v ving at start

BouNs
of angles 32 @
Randomizer

0 @
Security 100 @

of angles to 32, Randomizer to 0 and Security to 100. Make sure that the “Moving at start’

option is ON. If you need any visual guidance, check the image above and to the right.

Setting up the “rain_generator_1” object

When we’re done with the “raindrop” object, it's time to set up the rain generators — and all we

need to set up when it comes to them, is setting the path movement to the first rain generator.

Select “rain_generator_1", go to it’'s properties, select the Movement tab (third from the left).

Page 9/21

Open the drop-down list and select the “Path” movement. Now, click on the “Edif’ button. The

Path Movement toolbar should appear:

@ path Movement Setup

f{.& |¢|‘|ﬂ|lv Speed:

[_ Tiy Movement | [0K | [Cancel] [Help]

Using the first button to the left (the one with a single line linking a box and an arrow) select the
“New line” tool. Click at the 520, -10 coordinates of your frame (they don’t have to be the same)
— or click somewhere near those coordinates - to create a path similar to the one shown on this

screenshot:

5 Light rain orR

Now, select the first node of the movement (click on the first of the two rectangles that have
been created and linked with a path), set the speed — using the speed slider — to 100, the
maximum speed value. Do the same thing for the second rectangle too, this time setting the
speed to 75. Push the “Loop the movement’ and “Reverse at end” buttons (those are the fourth

and fifth buttons counting from the left) to receive a nice looping path movement. Click OK.

Got it? Great! We're done with mangling with the settings, then! It’s time to move on to the fun

part — using the Event Editor to script all those events that will make this little app come alive!

Part lll: It’s time for some coding!

Koobare’s MMF-to-paper coding system
Open the Event Editor. Take a look around — | hope that what you see here is quite

recognizable to you. If not — it would be best to get familiar with the MMF2’s users manual or

one of my earlier tutorials, “Smelly Claw”. It isn’t really necessary, since all this is pretty self-

Page 10/21

explanatory, but - if it's your first time ever with Multimedia Fusion 2 — a quick look at the

manual won’t hurt you, y’know?

Anyways, whether you know a thing or two about the Event Editor, or not, let me introduce you
to my MMF2-to-paper event-recording system, that helped us a lot with the “Glob Wars” and

“Fusion Player” tutorials:

IF (Condition): [Object for the condition] > Condition group > Condition
THEN (Action): [Object for the action] > Action group > Action

All the conditions are marked in red color, while actions are written in fancy blue. Object names
are always put in [square brackets]. The final condition/action is always in /ltalic. If we’ll have a

multi-condition event, then we’ll have:

IF (Condition 1): [Object for condition 1] > Condition group 1 > Condition 1
IF (Condition 2): [Object for condition 2] > Condition group 2 > Condition 2
THEN (Action): [Object for the action] > Action group > Action

Whereas a multi-action event looks like this:

IF (Condition): [Object for condition] > Condition group > Condition

THEN (Action 1): [Object for the action 1] > Action group 1 > Action 1
THEN (Action 2): [Object for the action 2] > Action group 2 > Action 2
THEN (Action 3): [Object for the action 3] > Action group 3 > Action 3

If you'll have to input anything by keyboard (for example: a value to set the counter to, or a text
that is going to be displayed with the alterable string option — or other things that you use the
expression editor for) it will be indicated by coloring the text in green and using < angle
brackets >, like in this example (note that sometimes the given text will be set ltalic for easier

recognition):

< Set the Global Value A to 32 >

Additional comments, info and instructions will be put in << double angle brackets >>, using a

different color:

<< Select any wave sound from the MMF2’s sound library >>

Page 11/21

There’s not much philosophy in it, you just have to go step-by-step through all the events and
keep one eye on your Event Editor, and the second one on this tutorial. Seems pretty simple,

right? Let’s start coding, then!

Coding the rain

Create all the events listed here, one after one:

1) Firstly, let’s start with the “Start of frame” event... This little thingy — as soon as the frame
starts - disables the buttons that should be disabled at the beginning of the frame and sets the
counters to correct values (this isn’t really that necessary, since we set those counters correctly
in their properties — you remember that, right? Well, | just like to be certain everything’s gonna’
be fine, by making sure that the counters will have exactly the value | need... Just in case I've

forgot something. Nonetheless, you can skip the last two actions of this event, if you wish):

IF: [Storyboard Controls] > Start of frame

THEN: [down_button] > Disable

THEN: [normal_button] > Disable

THEN: [direction_counter] > Set Counter
<input: 24>

THEN: [speed_counter] > Set Counter
<input: 35>

2) Secondly, let’s go for the “Always” event... This event will make sure that the speed of the
raindrop is always set to the speed_counter’s value, and that the direction of the raindrop is
always set to the value of the direction_counter. All of this is pretty simple, but still it remains

a basis for the rest of our program to work correctly.

IF: [Special Object] > Always
THEN: [raindrop] > Direction > Select direction
<< Press the “1+1” button to use a calculation >>
<< Click the “retrieve data from object” button >>
<< Select [direction_counter] > Current value >>
THEN: [raindrop] > Movement > Set speed
<< Click the “retrieve data from object” button >>

<< Select [speed_counter] > Current value >>

3) And here’s our third event, destroying the raindrop when it touches the ground:

Page 12/21

IF: [raindrop] > Collisions > Backdrop

THEN: [raindrop] > Destroy

Now, create a new group of events (right click on an event number and select Insert > A
group of events) — name it “Speed & direction controls”. Events from sections 4 & 5 (below)

should be inserted into this group.

4) Here you have a series of three events (you should insert all of them in the “Speed &
direction controls” event group), controlling the angle at which the rain falls. If you'll click on the
down_button, you’ll set the direction_counter to 24, deactivate the down_button (so that it
cannot be clicked twice — this is purely aesthetical, as | like to disable all buttons that can’t
change anything at the moment) and activate the two remaining buttons that control the
raindrops’ falling angle. Similar actions are initiated when the player clicks on either the
right_button or left_button, changing the rain’s falling angle to “slightly right” or “slightly left”
(directions 25 and 23).

IF: [down_button] > Button clicked?

THEN: [right_button] > Enable

THEN: [down_button] > Disable

THEN: [left_button] > Enable

THEN: [direction_counter] > Set Counter
<input: 24>

IF: [right_button] > Button clicked?

THEN: [right_button] > Disable

THEN: [down_button] > Enable

THEN: [left_button] > Enable

THEN: [direction_counter] > Set Counter
<input: 25>

IF: [left_button] > Button clicked?

THEN: [right_button] > Enable

THEN: [down_button] > Enable

THEN: [left_button] > Disable

THEN: [direction_counter] > Set Counter
<input: 23>

5) And yet another two events (remember to put them inside the “Speed & direction controls”

group) — this time controlling the speed of the falling rain:

Page 13/21

IF: [normal_button] > Button clicked?

THEN: [fast_button] > Enable

THEN: [normal_button] > Disable

THEN: [speed_counter] > Set Counter
<input: 35>

IF: [fast_button] > Button clicked?

THEN: [fast_button] > Disable

THEN: [normal_button] > Ensable

THEN: [speed_counter] > Set Counter
<input: 65>

It's now time to create two more groups of events — name them “Light rain” and “Heavy
rain”. They will be activated and deactivated by clicking on the specified buttons, changing the
density of the falling rain. Events from sections 6, 7 & 8 (you can find them all below) should be
inserted into the group “Light rain”, whereas events from sections 9, 10 & 11 should be inserted

into the group “Heavy rain”.

6) Create this event inside the “Light rain” group. This will make sure that when the “Light rain”

group is activated, the “Heavy rain” one stays inactive, plus that the buttons behave correctly.

IF: [Special Object] > Group of events > On group activation
THEN: [light_button] > Disable

THEN: [heavy_button] > Ensable

THEN: [Special Object] > Group of events > Deactivate

<< Select the Heavy rain group >>

7) OK, here come the events that will control the creation of raindrops when the “Light rain”
group is active! There are quite a lot of them, although if we would make either some more or
some less — nothing would go wrong. Why are there so many of them and why do they have
such strange numbers selected? Because this makes them appear more random. Yep — take a
look at the rain outside your window, it's not raining by a mathematical expression, it’s raining
randomly — and that's what we’re trying to achieve here (that’s also the reason why we have
two rain generators — one moving via a path movement, the second one “jumping” around the
frame via a random “set X position” event, as shown below). Anyway, telling long story short:
you can play a little with these here numbers, change them as you like, it — unless you change

them too much — won'’t affect the overall “feel” of what we’re doing here:

Page 14/21

IF: [The Timer Object] > Every
<< Set the timer to 01.17 seconds >>
THEN: [Create New Objects] > Create Object
<< Select the “raindrop” object >>

<< Set the coordinates to x=0, y=0 relatively to the “rain_generator_1” object >>

IF: [The Timer Object] > Every
<< Set the timer to 02.54 seconds >>
THEN: [Create New Objects] > Create Object
<< Select the “raindrop” object >>

<< Set the coordinates to x=-13, y=0 relatively to the “rain_generator_1" object >>

IF: [The Timer Object] > Every
<< Set the timer to 02.89 seconds >>
THEN: [Create New Objects] > Create Object
<< Select the “raindrop” object >>
<< Set the coordinates to x=-2, y=9 relatively to the “rain_generator_2” object >>
THEN: [rain_generator_2] > Position > Set X coordinate
<input: Random(500) >

The event above will not only create a new raindrop at the (-2, 9) coordinates, relatively to the
rain_generator_2 object, but will also — what’s worth mentioning - move the rain_generator_2
to a random X position (MMF2 will generate a number from 0 to 499 and transport the

rain_generator_2 onto that X position, while that object’s Y position will remain unchanged).

IF: [The Timer Object] > Every
<< Set the timer to 03.21 seconds >>
THEN: [Create New Objects] > Create Object
<< Select the “raindrop” object >>

<< Set the coordinates to x=18, y=-3 relatively to the “rain_generator_1" object >>

IF: [The Timer Object] > Every
<< Set the timer to 03.87 seconds >>
THEN: [Create New Objects] > Create Object
<< Select the “raindrop” object >>

<< Set the coordinates to x=17, y=1 relatively to the “rain_generator_1” object >>
IF: [The Timer Object] > Every

<< Set the timer to 04.07 seconds >>

THEN: [Create New Objects] > Create Object

Page 15/21

<< Select the “raindrop” object >>

<< Set the coordinates to x=4, y=5 relatively to the “rain_generator_1" object >>
IF: [The Timer Object] > Every

<< Set the timer to 04.33 seconds >>
THEN: [Create New Objects] > Create Object

<< Select the “raindrop” object >>

<< Set the coordinates to x=0, y=2 relatively to the “rain_generator_1" object >>

IF: [The Timer Object] > Every
<< Set the timer to 05.77 seconds >>
THEN: [Create New Objects] > Create Object
<< Select the “raindrop” object >>

<< Set the coordinates to x=1, y=3 relatively to the “rain_generator_1” object >>

IF: [The Timer Object] > Every
<< Set the timer to 05.44 seconds >>
THEN: [Create New Objects] > Create Object
<< Select the “raindrop” object >>

<< Set the coordinates to x=-9, y=-1 relatively to the “rain_generator_1”" object >>

IF: [The Timer Object] > Every
<< Set the timer to 06.711 seconds >>
THEN: [Create New Objects] > Create Object
<< Select the “raindrop” object >>

<< Set the coordinates to x=-7, y=-3 relatively to the “rain_generator_1”" object >>

8) Here’s the last event that you should insert into the “Light rain” group:

IF: [heavy_button] > Button clicked?
THEN: [Special Object] > Group of events > Activate

<< Select the Heavy rain group >>

OK, that’s it when it comes to the “Light rain” group — if you wish, you can save your work and

take a look at how it works at the current stage of development. When you’re done testing —

let’s move on! And try to remember that all the events listed below should be created inside the

“Heavy rain” group, not the “Light rain” one!

9) Create a new event (notice it's similarity to one of the events that you can find above):

IF: [Special Object] > Group of events > On group activation

Page 16/21

THEN: [heavy_button] > Disable
THEN: [light_button] > Enable
THEN: [Special Object] > Group of events > Deactivate

<< Select the Light rain group >>

10) Its raindrop creation time again! But this time the raindrops are going to be created a bit

faster, showing the player that it's seriously raining down there, in our game’s world:

IF: [The Timer Object] > Every
<< Set the timer to 00.42 seconds >>
THEN: [Create New Objects] > Create Object
<< Select the “raindrop” object >>
<< Set the coordinates to x=-2, y=9 relatively to the “rain_generator_2” object >>
THEN: [rain_generator_2] > Position > Set X coordinate
<input: Random(500) >

IF: [The Timer Object] > Every
<< Set the timer to 01.712 seconds >>
THEN: [Create New Objects] > Create Object
<< Select the “raindrop” object >>

<< Set the coordinates to x=12, y=6 relatively to the “rain_generator_2” object >>

IF: [The Timer Object] > Every
<< Set the timer to 00.35 seconds >>
THEN: [Create New Objects] > Create Object
<< Select the “raindrop” object >>

<< Set the coordinates to x=0, y=0 relatively to the “rain_generator_1" object >>

Additional game idea: it’s raining like madness, I tell ya’!

e Would you like to change that rainy weather into a truly apocalyptic hurricane? Just
change the timer’s settings in the three events above to 00.02, 00.09 and 00.05,
then — while testing the app — click on the “Heavy rain” button. Wow, a flood seems
imminent!

o Please, be aware that setting the timer to the numbers given above can make your

game work a bit slower on some older computers, or even bring it to a total halt!

Page 17/21

IF: [The Timer Object] > Every
<< Set the timer to 00.71 seconds >>
THEN: [Create New Objects] > Create Object
<< Select the “raindrop” object >>

<< Set the coordinates to x=-13, y=0 relatively to the “rain_generator_1" object >>

IF: [The Timer Object] > Every
<< Set the timer to 071.55 seconds >>
THEN: [Create New Objects] > Create Object
<< Select the “raindrop” object >>

<< Set the coordinates to x=22, y=2 relatively to the “rain_generator_1” object >>

IF: [The Timer Object] > Every
<< Set the timer to 01.87 seconds >>
THEN: [Create New Objects] > Create Object
<< Select the “raindrop” object >>

<< Set the coordinates to x=-1, y=2 relatively to the “rain_generator_1” object >>

IF: [The Timer Object] > Every
<< Set the timer to 02.28 seconds >>
THEN: [Create New Objects] > Create Object
<< Select the “raindrop” object >>

<< Set the coordinates to x=18, y=-3 relatively to the “rain_generator_1" object >>

IF: [The Timer Object] > Every
<< Set the timer to 02.53 seconds >>
THEN: [Create New Objects] > Create Object
<< Select the “raindrop” object >>

<< Set the coordinates to x=5, y=3 relatively to the “rain_generator_2” object >>

IF: [The Timer Object] > Every
<< Set the timer to 02.71 seconds >>
THEN: [Create New Objects] > Create Object
<< Select the “raindrop” object >>

<< Set the coordinates to x=17, y=1 relatively to the “rain_generator_1” object >>

IF: [The Timer Object] > Every
<< Set the timer to 03.77 seconds >>
THEN: [Create New Objects] > Create Object

<< Select the “raindrop” object >>

Page 18/21

<< Set the coordinates to x=4, y=5 relatively to the “rain_generator_1" object >>

IF: [The Timer Object] > Every
<< Set the timer to 03.65 seconds >>
THEN: [Create New Objects] > Create Object
<< Select the “raindrop” object >>

<< Set the coordinates to x=0, y=2 relatively to the “rain_generator_1" object >>

IF: [The Timer Object] > Every
<< Set the timer to 03.86 seconds >>
THEN: [Create New Objects] > Create Object
<< Select the “raindrop” object >>

<< Set the coordinates to x=-9, y=-1 relatively to the “rain_generator_1” object >>

IF: [The Timer Object] > Every
<< Set the timer to 04.15 seconds >>
THEN: [Create New Objects] > Create Object
<< Select the “raindrop” object >>

<< Set the coordinates to x=1, y=3 relatively to the “rain_generator_1” object >>

IF: [The Timer Object] > Every
<< Set the timer to 05.712 seconds >>
THEN: [Create New Objects] > Create Object
<< Select the “raindrop” object >>

<< Set the coordinates to x=-7, y=-3 relatively to the “rain_generator_1”" object >>

11) Here’s the last event that you should insert into the “Heavy rain” group and the last event

we’re going to create, as well. Yep, it's only this and we’re done here!

IF: [light_button] > Button clicked?
THEN: [Special Object] > Group of events > Activate

<< Select the Light rain group >>

And that’s all, folks!

We’'ve just created a professional, good-lookin’ rain effect that you can use in your games or
applications any time! And yes, you can use those little raindrop graphics too — they’re not of
the highest quality, but can come in handy if you don’t want to waste any time on drawing some

simple drops of water.

Page 19/21

Perhaps you should try to do this tutorial all over again, but this time without this little tutorial to
guide you... Maybe even try to expand this project’s concept a bit? Here’s an additional idea

that you might find interesting...

Additional game idea: toxic poison from the skies

e Here’s an idea that can give one of your games an additional twist: what if the world
of your game got contaminated and there’s poisonous rain pouring outside? Every
drop that falls on the player brings him one step towards mutation and a big, red
“‘game over” sign. Player’s objective? While he’s outside, he’s got to run from one
cover to another (those covers could be slowly eaten away by the contaminated
rain) and fight off some hideous mutants in the same time.

o A simple trick that can get this idea going: every time a drop of green rain touches
the Player (these two objects collide), add 1 to the Alterable Value A of the Player
object. When the Alterable Value A of the Player object reaches 100 — destroy the
Player, show the “game over” sign. Every time the Player collides with a bottle of
water or something like that (and thus is able to wash the poison of his skin) —
subtract 50 from the Alterable Value A of the Player object. If the player finds a
shower — set the Alterable Value A of the Player to 0.

Thanks for your time and see you again soon!

Cheers!

marchewkowy@gmail.com

If you have any questions, suggestions or just need help —

mail me at marchewkowy@gmail.com

Page 20/21

Coming up next!

Hope that you enjoyed this episode of “Enhancing the Feel’ tutorial series, because more tutorials are
already on their way! Here you can take a peak at the wind & snow tutorial, that will be soon available to

download from Clickteam’s Learning Resources center!

@ Enhancing the Feel
File Options Help

Wind Power:
l | Plaver controlled |

Enhancing the Feel E|@|g]
File Options Help

Page 21/21

