
Page 1/22 

 

 
Engine Works:  

Saving & Loading 
 
 

 
 

 
 
 
 
 

 
You may not use this tutorial for any other purpose than learning, working or 
having fun... In other words: You can use this tutorial for anything you’d like, 

as long as it doesn’t involve both a hammer and a squirrel.  

 
 

 
marchewkowy@gmail.com  



Page 2/22 

Hi there, all! 

 

Welcome to another one of Koobare’s tiny tutorials, teaching you how to effectively and 

efficiently work with the best multimedia authoring tool ever - Multimedia Fusion 2 by 

Clickteam! The main purpose of this tutorial is to teach you how to easily create a fully-

functional slot-based save & load system, by using a couple of Global Values, two arrays and 

a handful of slick tricks. But firstly – a story… 

 

Once upon a time, there was a brave and fearless warrior that ventured into the Dungeon of 

Doom, to seek the evil dragon, slay him and rescue the beautiful princess from his ugly claws. 

After facing hordes of ghoulish crypt dwellers, flesh-eating undead, axe-throwing orcs and 

horrid lizardmen, he finally reaches the dreadful dragon’s chamber, and... Eep, someone 

accidentally pushed the “reset” button! Mom, why the heck were you vacuum cleaning my 

computer?! Well, perhaps I like it being dusty n’ all! And now my six hours of monster-slaying, 

level-advancing and door-bashing just went to the dustbin, thanks to you and this darn game 

designer that didn’t even bother to input a way of saving the game! 

 

Sounds familiar? No? Well, that’s because most of the game designers DO bother to add a 

save & load system to their projects. And believe me – if you’re thinking about creating 

anything bigger than the usual Pac-Man clone, you should really consider adding such a thing 

to your project too. Don’t know how? Well, heck, that’s why I’m here, right? Just follow the 

steps of this here tutorial to get yourself familiar with a nice and easy way of creating 

savegames and loading them from your hard drive… Oh yeah, and keep your eyes open for 

smaller details - perhaps you’ll learn a trick or two that can come handy when creating an 

isometric game too.  

 

So, are you ready to learn something new? Are you as brave and fearless as the warrior from 

our little story? Sure you are! Just grab your sword, adventurer, and let’s get it on already!  

 

 

If you have any problems with this tutorial, or notice that there are some  

mistakes present, please, contact me and I’ll do my best to help you and 

replace all the errors with correct information. 

 

        Contact me at: marchewkowy@gmail.com 

 



Page 3/22 

Part I: Let’s skip it! 

 

Usually, we start with setting up our application’s properties, click after click. We firstly create 

our app, save it, mess around with the Properties Toolbar, play a little with the Window size, 

import some objects, create a few more… Well, not this time, lad. The “Engine Works” tutorial 

series is really about creating a bit of mechanics that can be added to your game’s engine – 

not a graphical effect, nor something that has to be precisely positioned in the Frame Editor. 

Nope – it’s all about the Event Editor here. It’s all about MMF2-coding, the programming 

part. And that’s why we’re going to skip the “setting up, importing & creating” part (which 

sometimes can be as interesting as watching paint dry) and go straight for the programming 

essence… If you’d like to learn more about using the Frame Editor, creating objects or playing 

with their settings – just download the “Glob Wars”, “Smelly Claw”, “Fusion Player” or 

“Enhancing the Feel” tutorials. You’ll find a lot info covering the aforementioned topics there. If 

you require more of a basic approach – download the “Interface Guide” and read it thoroughly.  

 

Now, let’s start by opening our empty_save&load.mfa file (don’t mistake it with the second 

one - engine_save&load.mfa – which already has all the events coded) – it should be zipped 

in the same archive as this PDF document was. We will use it as our basis for this project, as 

it has all the needed objects already set up and ready to use.  

 

Once the file is opened, go to the Frame Editor (just double-click on the frame’s thumbnail in 

the Storyboard Editor) and examine the available frame. It should look like this:  

 

 



Page 4/22 

 

      All TGF2 users: be advised! 
 

• Please note that some of the objects created for this tutorial use alpha channels, a 

feature that is unavailable in The Games Factory 2. TGF2 users should use basic 

library objects or create their own graphics instead. 

 

 

 

We’ve got 29 objects in general here: eight Button objects, two Quick Backdrops, two Strings, 

an Edit Box, two Array objects, couple of Actives… Looks pretty cool, right? Examine them if 

you wish – check their settings for yourself, notice that the “blue_square” and “blue_soldier” 

objects are two separate objects, that the “string_current_turn” object has two paragraphs set 

up, that the Edit Box object has a different background color…The two most important objects 

to look up here are our Arrays – the “main_array” and “slots_array” objects. Before we do that, 

though, let’s have some theory, shall we? A little chit-chat about objects that really can come 

in handy, at least from time to time – about Arrays.  

 

  

Part II: Introduction to Arrays 

 

Arrays? What are they? What can you do with them? Those of you, dear Clickers, that haven’t 

met with an Array yet may have such questions running between their ears right now. And I 

would be a backstabbing, vicious skunk if I haven’t answered them. And as vicious and 

backstabbing as I am, I would prefer staying a Homo sapiens, rather than becoming a 

Mephitis mephitis stinkin’ little creature.  

 

The Array object enables you to store data (values or text – you decide) in a simple, yet 

organized, way. Try to think of the Array as of a big table where all the cells have an “address” 

assigned to them. To access the data stored in the given box, you have to input the “address” 

that corresponds to that cell. “Addresses” can consist of a single number (if you’re using a 1-

dimensional array), two numbers (X and Y – if you’re using a 2-dimensional array) or three 

numbers (X, Y and Z – when using a 3-dimensional array). You can specify how large should 

your array be (how many cells should it have) by accessing it’s settings via the Properties 

Toolbar (the “Settings” tab, first from the left – you can set your Array’s type there, set it’s 

dimensions, make your Array global to the entire application and/or set it’s index to be either 

0-based or 1-based, determining whether the Array will start at 0 or 1). 



Page 5/22 

OK, time for an example, let’s keep this as clear as possible. Let’s say that we’ve just created 

an action-adventure game, with little bits of RPG-like character development here and there. 

We want to store the current number of Health Points (HP) of the player’s character, his Mana 

Points (MP), Experience Level (LEV) and his current number of Experience Points (XP). In 

other words: we have four different values to store. What should we do? Well, the easiest way 

(when it comes to Arrays) would be to create a 1-dimensional Array: just create an Array 

object, go to it’s properties, set the X dimension to 4, Y dimension to 1, Z dimension to 1, and 

set the whole thing to a Number array. Array objects are always invisible, so you won’t be able 

to look at what you’ve just created, but if you’d have such an occasion, it would look like this: 

 

 

 

 

Having such an Array created, you can easily store our player’s attributes in it, for example 

using X=1 as the storing point for player’s HP, X=2 as the cell where we’re going to store 

Mana Points, X=3 being used for LEV and X=4 for XP. This means that when our player’s HP 

would be reduced from 100 to 57 (for example, the player could have just sustained a 

powerful blow from a ferocious troll), then our game should set the value in our Array’s cell 

X=1 to 57. When the player would use a healing potion – set X=1 to 100 once more. 

 

Oh, and remember me saying something about a “1-based index”? All newly created Arrays 

have the “Base 1 index” option turned ON by default. That means that our Arrays start 

counting their cells at “1”. What would happen if we’d turn this option OFF? Well, not much. 

Then our 1-dimensional array would look like this: 

 

 

 

Not much of a change, is it? It’s pretty much the same, you’ll just have to remember that with 

the “Base 1 index” option OFF, our player’s HP would be stored at X=0, not X=1.  

 

Seems simple, right? And simple it is. Although, I must say, storing as little as four values in 

an object as powerful as an Array… That’s just wasting it’s power, man! The real fun starts 

when we want to store lots and lots of values – not only the basic stats of our game’s 

protagonist, but also his inventory, spells that he learned, all the info about available quests, 

non-player characters running around, visited locations… Now that’s a lot of data to store, my 

dear Clicker! And that’s when the 2-dimensional Array comes in! 



Page 6/22 

How to create a 2D Array, like the one you can see to 

the left? Well, simply create a new Array object, change 

it’s X dimension to 4, change it’s Y dimension to 3, leave 

Z at 1… And you got it! Now you can not only store more 

data in a fancier way, but you can also keep it better 

organized! Just think about this: you could use the X=1 

column (with it’s Y=1, Y=2, Y=3…) as a place to store the 

character’s main attributes (for example: our character’s Health Points could be stored at the 

X=1, Y=1 cell), the X=2 column could be used for secondary abilities, the X=3 column for 

keeping track of started and finished quests… And so on. Using a 2-dimensional Array gives 

you a lot more possibilities! The one thing that you should remember at all times when using a 

2D array: the “addresses” leading to the specified cells consist now of two numbers – one for 

the columns (X) and one for the rows (Y).  

 

There’s not much to add when it comes to the 3D 

Array (take a look at the image to the right if you need 

visual aid) – it basically just adds another dimension 

(Z – and that means that all cells now have 

“addresses” consisting of 3 numbers), which makes it 

a bit easier to control huge amounts of organized 

data. For example: a 3-dimentional Array could prove 

itself useful when our game’s protagonist would be 

joined by a band of adventurers, merging a party. Having each party member’s attributes, 

abilities, etc. in the same Array, but on a different Z-level could speed up our creation process 

and simplify the expressions that we’ll have to use to set, load and save all the needed 

figures. A 3D Array has it disadvantages, though: it can slow down your game on older 

computers, so be sure to use it wisely.  

 

What’s more to be said here? Three things. Firstly, be aware that Arrays are a bit slower 

than Global Values and Alterable Values – as their structure is more complicated. This 

won’t show up in a typical game, but it’s a thing to remember, especially if you’re going for one 

of those bigger, resource-eating projects, where three fractions of a second here and there 

can really make a difference.  

 

Secondly, the Array object itself doesn’t have a “Compare to a value” condition. This can be a 

bit misleading, but there’s an easy way around this – just use the “Compare two general 

values” condition from the Special Object’s menu and then retrieve data from the Array.  



Page 7/22 

And finally… Last, but not least (actually, I guess that’s the most important thing about Arrays 

for us, when it comes to this tutorial): Arrays are great when it comes to saving data to 

disk and retrieving it later, as you can easily set them up to save all their cells in a fast and 

reliable way. Always remember: need to save something? An Array can help you with that.   

 

And… That’s all when it comes to Arrays. They’re not as scary as they seemed at the 

beginning, right? Scary – no. Useful – yes. Better keep them in mind. You’ll never know when 

one of them can come in handy.  

 

 

Part III: Defining goals 

 

It’s time to ask the big question: what are we trying to achieve here? Heck, we know that we 

want to create a fully-functional save & load system, but you still don’t have too much details 

on your hands, don’t you? Time to change that. Time to define our goals! Come on, take a 

quick look at the image shown below: 

 

 

 

Remember those two soldiers? Or that isometric battlefield? They will help us FAKE a little 

turn-based game. The whole thing goes like this: the “game” starts with the RED player’s turn 

being active. Our user can move his red soldier (marked as “1” in the upper image) by clicking 

somewhere on the battlefield. Once the move is done, the player has to click on the “End turn” 

button (2), which will deactivate the red soldier and activate the blue one. Once again a move 

can be made and the “End turn” button can be pushed. Every time a soldier moves, a random 

number is generated in the upper-right corner of the battlefield (4)… And… that’s it. No 

grenade-throwing, no shooting, no special effects – it’s as basic as possible, just to give us 



Page 8/22 

something to save in our little Array, and that “something” is a randomly generated number, 

two pairs of coordinates and a “who’s turn is it?” control value. 

 

OK, let’s say that we have already played a bit with moving our two figurines. What happens 

next? We have to select a slot to which the game will be saved (5), enter the name for our 

savegame (6) and click the “Save Game” button. Then – let’s move some more! Once we’re 

ready to load the previously saved data, we just have to select the savegame slot (5) and 

press the “Load Game” button (8). And – voila! – the savegame has been loaded! 

 

To simplify and speed up the whole process of creating such a system, I’ve used – besides 

the aforementioned Arrays – a couple of Global Values (two, to be exact – named “SaveSlot” 

and “WhichTurn”) and Global Strings (five of them: “SlotName1”, “SlotName2”, “SlotName3”, 

“SlotName4” and “SlotName5”) – if you’d like to have a closer look at them, just go to the 

“Values” tab in the properties of our application. If you’d like to read more about Global 

Values, their usage and functions – be sure to download the “Fusion Player” tutorial, available 

at the “Learning Resources” corner of Clickteam’s website. 

 

One more thing worth mentioning: our “pseudogame” will create 6 files at your hard drive 

(drive C:) - you can erase them as soon as this tutorial is over. All files are purely game data: 

“test_save1”, “test_save2”, “test_save3”, test_save4”, “test_save5” and “test_saveslots”, they 

contain about 515 bytes of information. They are saved to [C:] just to make this tutorial a bit 

easier and skip the “build into a stand-alone app and install” part. If you’ll add this system to 

one of your games, be sure not to trash up someone’s main directory, make sure that all 

savegames will be created in the folder your game has been installed to. To do so, use this 

expression when giving the path to where your data should be saved: 

 

appdrive$ + appdir$ + “name_of_your_file”  

 

This little expression saves your savegame to the name_of_your_file file at the directory your 

game is installed at (It’s an expression worth remembering, so make sure that you memorize 

it, or at least scribble it down on a piece of paper, then attach it to your monitor). It has one 

disadvantage, though: it’s not the best thing if you’re still in the process of creating your game. 

It works best with a fully completed, built into an .exe and installed copy of your project.  

 

Anyways… Once you’re done admiring that nifty expression… Let’s continue. Part IV is 

awaiting us, and that means… Yep, that means it’s time for some coding, cadet! Open your 

Event Editor and let’s not waste any more time! 



Page 9/22 

Part IV: Scripting the system 

 

Koobare’s MMF-to-paper coding system 

 

I guess that some of you have already met my MMF2-to-paper event-recording system, that 

helped us a lot with my earlier tutorials. If not – read on, it’s pretty simple to learn and really 

quite useful. If you know what it’s all about, just skip this introduction and head on to the 

scripting. Anyway, here’s what it’s all about: 

 

IF (Condition): [Object for the condition] > Condition group > Condition 

THEN (Action): [Object for the action] > Action group > Action  

 

All the conditions are marked in red color, while actions are written in charming blue. Object 

names are always put in [square brackets]. The final condition/action is always in Italic. If we’ll 

have a multi-condition event, then we’ll have: 

 

IF (Condition 1): [Object for condition 1] > Condition group 1 > Condition 1 

IF (Condition 2): [Object for condition 2] > Condition group 2 > Condition 2 

THEN (Action): [Object for the action] > Action group > Action 

 

If you’ll have to input anything by keyboard (for example: a value to set the counter to, or a 

text that is going to be displayed with the alterable string option – or other things that you use 

the Expression Editor for) it will be indicated by coloring the text in green and using < angle 

brackets >, like in this example (note that sometimes the given text will be set Italic for easier 

detection – it doesn’t really mean anything): 

 

 < Set the Global Value A to 32 > 

 

Additional comments, info and instructions will be put in << double angle brackets >>, using a 

different color: 

 

 << Select any wave sound from the MMF2’s sound library >> 

  

There’s not much philosophy in it, you just have to go step-by-step through all the events and 

keep one eye on your Event Editor, and the second one on this tutorial. It’s really as simple as 

that... So, are you ready? Let’s move in, then!  

 



Page 10/22 

The Save & Load system 

 

Create all the events listed here, one by one: 

 

1) Firstly, let’s start with the usual “Start of Frame” event… This event will set up our frame 

for all the things to come, it also loads the “test_saveslots” savefile from the given location, if 

available. Note that you don’t have to enable all those buttons (just a single “Disable” for 

button_slot_1 would do), you don’t have to set the SaveSlot Global Value here either – I’m just 

being pedantic here. What’s important: be sure that the sequence of actions is 

PRECISELY the same as listed here. To do this, double-click on one of the actions 

(“checked boxes”) and then drag & drop actions to match the given order: 

 

IF: [Storyboard Controls] > Start of Frame 

THEN: [slots_array] > Files > Load array from file 

   << Click on the “Expression” button >> 

< input: "C:\test_saveslots" > 

   << In the expression above, be sure to input quotation marks as well! >> 

THEN: [button_slot_1] > Disable 

THEN: [button_slot_2] > Enable 

THEN: [button_slot_3] > Enable 

THEN: [button_slot_4] > Enable 

THEN: [button_slot_5] > Enable 

THEN: [Special Object] > Change a global value > Set 

 < Set SaveSlot to 1 > 

THEN: [edit_box] > Control > Limit text size 

 < input: 15 > 

          THEN: [Special Object] > Set global string 

<< Select the “SlotName1” Global String >> 

< Either just input this:  StrAtX( "slots_array", 1)   OR click on the “retrieve data from an 

object button, select the slots_array object, and then the “Read value from X position” 

and after that input: 1 > 

          THEN: [Special Object] > Set global string 

<< Select the “SlotName2” Global String >> 

< input this:  StrAtX( "slots_array", 2)  > 

          THEN: [Special Object] > Set global string 

<< Select the “SlotName3” Global String >> 

< input this:  StrAtX( "slots_array", 3)  > 

          THEN: [Special Object] > Set global string 

<< Select the “SlotName4” Global String >> 



Page 11/22 

< input this:  StrAtX( "slots_array", 4)  > 

          THEN: [Special Object] > Set global string 

<< Select the “SlotName5” Global String >> 

< input this:  StrAtX( "slots_array", 5)  > 

THEN: [button_slot_1] > Change text 

< input this:  SlotName1  > 

THEN: [button_slot_2] > Change text 

< input this:  SlotName2  > 

THEN: [button_slot_3] > Change text 

< input this:  SlotName3  > 

THEN: [button_slot_4] > Change text 

< input this:  SlotName4  > 

THEN: [button_slot_5] > Change text 

< input this:  SlotName5  > 

 

Phew. Now that was something, wasn’t it? There’s gonna’ be even a bigger one later on. 

 

 

 

2) It’s time for our second event – the “Always” one, always being true. This will make sure 

that everywhere the “red_square” object goes– the “red_soldier” object will follow. The same 

for the “blue_square” and “blue_soldier” objects: 

 

IF: [Special Object] > Always 

THEN: [red_soldier] > Position > Select Position 

 << Set the coordinates to x=58, y=30 relatively to the “red_square” object >> 

THEN: [blue_soldier] > Position > Select Position 

 << Set the coordinates to x=58, y=30 relatively to the “blue_square” object >> 

 

 

 

3) And here comes the third event… Pretty useful stuff for all you isometric-game-creators, 

even at it’s basic form. This script brings our two soldier-figurines into correct order, based on 

a test that checks which one of them has a lower Y position (we’ll return to ordering later on).  

 

IF: [red_soldier] > Position > Compare Y position to a value 

<< Set the comparison mode to “Lower” >> 

< input this:  Y( "blue_soldier" )  > 

THEN: [blue_soldier] > Order > Bring to front 



Page 12/22 

4) Here’s the same thing as in event #3, but this time the other way round:  

 

IF: [red_soldier] > Position > Compare Y position to a value 

<< Set the comparison mode to “Greater” >> 

< input this:  Y( "blue_soldier" )  > 

THEN: [red_soldier] > Order > Bring to front 

 

 

 

5) Create a new group of events and name it “Who’s 

turn is it?” (this, once again, isn’t really necessary, but 

will help us maintain some order and organization). While 

we’re at it, create two more groups below, naming them 

“RED player’s turn” and “BLUE player’s turn” (we will 

use them to create the basic turn-based fake game). 

Make sure that both the “Who’s turn is it?” and “RED 

player’s turn” groups have the “Active when frame 

starts” option set ON, whereas the “BLUE player’s turn” 

group should have this option turned OFF.  

 

Inside the first group (the “Who’s turn is it?” one), create the event given below – it will help us 

control which player (the red one or the blue one) should currently have his turn: 

 

IF: [Special Object] > Compare to a Global Value 

  << Select the “WhichTurn” Global Value >> 

<< Set the comparison mode to “Equal” >> 

< input: 0 > 

THEN: [Special Object] > Group of events > Activate 

 << Select the “RED player’s turn” group >> 

 

 

 

6) Another event, almost the same as the one listed above: 

 

IF: [Special Object] > Compare to a Global Value 

  << Select the “WhichTurn” Global Value >> 

<< Set the comparison mode to “Equal” >> 

< input: 1 > 



Page 13/22 

THEN: [Special Object] > Group of events > Activate 

 << Select the “BLUE player’s turn” group >> 

 

 

 

Got it? Great! Time to sum it up a bit… Here, let’s take a look at what we’ve got by now (note 

that it doesn’t have to look identical – and most probably won’t, because I’ve hid a couple of 

unused objects, just to take a screenshot): 

 

 

 

 

 

7) OK, it’s now time to code what happens when the “RED player’s turn” group is active – in 

other words: what happens during the red player’s turn. Create this event in the “RED player’s 

turn” event group: 

 

IF: [Special Object] > Group of events > On group activation 

 THEN: [Special Object] > Group of events > Deactivate  

     << Select the “BLUE player’s turn” group >> 

  THEN: [string_current_group] > Set paragraph 

     << Select the “Current turn: RED player” paragraph >> 

 THEN: [red_soldier] > Visibility > Change ink effect 

     << Select “None” >> 

 THEN: [blue_soldier] > Visibility > Change ink effect 

     << Select “Monochrome” >> 

 

That’s the first event from this group! Three more events to go before moving on to the next 

one! Let’s rock & roll, yeah! 



Page 14/22 

8) This event helps us to work out all that “who’s on top”, “who’s behind” ordering stuff: 

 

IF: [blue_square] > Collisions > Overlapping another object 

      << Select the “red_square” object >> 

IF: [red_soldier] > Position > Compare Y position to a value 

   << Set the comparison mode to “Equal” >> 

   < input this:  Y( "blue_soldier" )  > 

THEN: [red_soldier] > Order > Bring to front 

THEN: [red_square] > Order > Move in front of object 

      << Select the “blue_square” object >> 

 

 

 

9) A very simple, yet important, event that controls the player’s movement and makes the 

“random_number_counter” generate a random number from 0 to 999: 

 

IF: [Mouse & Keyboard] > The mouse > User clicks on an object 

       << Left button, single click >> 

    << Select the “green_square” object >> 

THEN: [red_square] > Position > Select Position 

      << Set the coordinates to x=0, y=0 relatively to the “green_square” object >> 

THEN: [random_number_counter] > Set counter 

   < input:  Random(1000)  > 

 

 

 

10) Here goes the last event in this group… A simple turn-switching: 

 

IF: [end_turn_button] > Button clicked? 

THEN: [Special Object] > Change a global value > Set 

     < Set  WhichTurn  to 1 > 

 

 

 

11) And now it’s time to code what happens when the “BLUE player’s turn” group is active 

(when it’s the blue player’s turn). Create this event in the “BLUE player’s turn” event group 

(and double-check if this group is inactive when the frame starts – that’s pretty important!): 

 



Page 15/22 

IF: [Special Object] > Group of events > On group activation 

 THEN: [Special Object] > Group of events > Deactivate  

     << Select the “RED player’s turn” group >> 

  THEN: [string_current_group] > Set paragraph 

     << Select the “Current turn: BLUE player” paragraph >> 

 THEN: [blue_soldier] > Visibility > Change ink effect 

     << Select “None” >> 

 THEN: [red_soldier] > Visibility > Change ink effect 

     << Select “Monochrome” >> 

 

 

 

12) And here’s another event that deals with ordering – it’s almost the same as the 8th one, 

but this time it’s modified to suite the blue player’s turn: 

 

IF: [red_square] > Collisions > Overlapping another object 

      << Select the “blue_square” object >> 

IF: [red_soldier] > Position > Compare Y position to a value 

   << Set the comparison mode to “Equal” >> 

   < input this:  Y( "blue_soldier" )  > 

THEN: [blue_soldier] > Order > Bring to front 

THEN: [blue_square] > Order > Move in front of object 

      << Select the “red_square” object >> 

 

 

 

13) Once again, this event should be placed inside the “BLUE player’s turn” event group: 

 

IF: [Mouse & Keyboard] > The mouse > User clicks on an object 

       << Left button, single click >> 

    << Select the “green_square” object >> 

THEN: [blue_square] > Position > Select Position 

      << Set the coordinates to x=0, y=0 relatively to the “green_square” object >> 

THEN: [random_number_counter] > Set counter 

   < input:  Random(1000)  > 

 

 

 

14) Not much left to go… Here’s the last event to put in the “BLUE player’s turn” group: 



Page 16/22 

IF: [end_turn_button] > Button clicked? 

THEN: [Special Object] > Change a global value > Set 

     < Set  WhichTurn  to 0 > 

 

 

 

OK, we’re almost at the end! Here’s another occasion to compare our versions: 

 

 

 

 

 

 

 

15) Time to go, no time to waste! There’s really not much left, so let’s hurry to the end! All 

events listed below should not be put in any group - I repeat: they DO NOT belong to any 

event group, just let them be! 

 

IF: [button_slot_1] > Button clicked? 

THEN: [button_slot_1] > Disable 

THEN: [button_slot_2] > Enable 

THEN: [button_slot_3] > Enable 



Page 17/22 

THEN: [button_slot_4] > Enable 

THEN: [button_slot_5] > Enable 

THEN: [Special Object] > Change a global value > Set 

     < Set  SaveSlot  to 1 > 

 

 

 

16) And here’s another event, veeery similar to the previous one… 

 

IF: [button_slot_2] > Button clicked? 

THEN: [button_slot_1] > Enable 

THEN: [button_slot_2] > Disable 

THEN: [button_slot_3] > Enable 

THEN: [button_slot_4] > Enable 

THEN: [button_slot_5] > Enable 

THEN: [Special Object] > Change a global value > Set 

     < Set  SaveSlot  to 2 > 

 

 

 

17) …And another one…Am I’m starting to be a bit paranoid, or are they (almost) identical? 

 

IF: [button_slot_3] > Button clicked? 

THEN: [button_slot_1] > Enable 

THEN: [button_slot_2] > Enable 

THEN: [button_slot_3] > Disable 

THEN: [button_slot_4] > Enable 

THEN: [button_slot_5] > Enable 

THEN: [Special Object] > Change a global value > Set 

     < Set  SaveSlot  to 3 > 

 

 

 

18) …Perhaps if I won’t look at it, it’ll just go away?   

 

IF: [button_slot_4] > Button clicked? 

THEN: [button_slot_1] > Enable 

THEN: [button_slot_2] > Enable 

THEN: [button_slot_3] > Enable 

THEN: [button_slot_4] > Disable 



Page 18/22 

THEN: [button_slot_5] > Enable 

THEN: [Special Object] > Change a global value > Set 

     < Set  SaveSlot  to 4 > 

 

 

 

19) …And here’s another one. Somehow, I’m not surprised. And I guess that neither are you.   

 

IF: [button_slot_5] > Button clicked? 

THEN: [button_slot_1] > Enable 

THEN: [button_slot_2] > Enable 

THEN: [button_slot_3] > Enable 

THEN: [button_slot_4] > Enable 

THEN: [button_slot_5] > Disable 

THEN: [Special Object] > Change a global value > Set 

     < Set  SaveSlot  to 5 > 

 

 

 

20) Here’s one that’s a bit more interesting… And a lot more complicated. After pushing this 

button the whole saving process starts – and it’s a real beauty. One thing to keep in mind: 

once again, the sequence of the actions is very, very important.  

 

IF: [button_save] > Button clicked? 

THEN: [main_array] > Write > Write Value to XY 

   < input this:  X( "red_square" )   > 

   < X index:  1   > 

   < Y index:  1   > 

   << this stores the X position of the “red_square” object within the Array >> 

THEN: [main_array] > Write > Write Value to XY 

   < input this:  Y( "red_square" )   > 

   < X index:  1   > 

   < Y index:  2   > 

   << this stores the Y position of the “red_square” object within the Array >> 

THEN: [main_array] > Write > Write Value to XY 

   < input this:  X( "blue_square" )   > 

   < X index:  2   > 

   < Y index:  1   > 

   << this stores the X position of the “blue_square” object within the Array >> 

THEN: [main_array] > Write > Write Value to XY 



Page 19/22 

 

   < input this:  Y( "blue_square" )   > 

   < X index:  2   > 

   < Y index:  2   > 

   << this stores the Y position of the “blue_square” object within the Array >> 

THEN: [main_array] > Write > Write Value to XY 

   < input this:   WhichTurn   > 

   < X index:  3   > 

   < Y index:  1   > 

   << this stores the value that determines who’s turn is it currently >> 

THEN: [main_array] > Write > Write Value to XY 

   < input this:   value( "random_number_counter" )   > 

   < X index:  3   > 

   < Y index:  2   > 

   << this stores the value of the counter >> 

THEN: [main_array] > Files > Save array to file 

   << click on the “Expression” button >> 

   < input:   "C:\test_save"+Str$(SaveSlot)   > 

   << this action saves the game in a file that’s name is based on the selected  

    slot’s number >> 

THEN: [Special Object] > Set global string 

   << click on the “Use Expression” button in the upper-right corner of the window >> 

   < input:   SaveSlot  > 

   << click “OK” >> 

   < input:   "Slot "+Str$(SaveSlot)+" ("+Edittext$( "edit_box" )+")"   > 

   << this one changes the text that is displayed on top of the selected saveslot button >> 

THEN: [button_slot_1] > Change text 

   < input this:  SlotName1  > 

THEN: [button_slot_2] > Change text 

   < input this:  SlotName2  > 

THEN: [button_slot_3] > Change text 

   < input this:  SlotName3  > 

THEN: [button_slot_4] > Change text 

   < input this:  SlotName4  > 

THEN: [button_slot_5] > Change text 

   < input this:  SlotName5  > 

 

Wow. Now that was a real record-breaker. I guess that it’s pretty easy to get lost within 

something like that – so, if any problems occur, double-check all these actions, just to see if 

you’ve typed them in correctly.  Sometimes a small mistake can take it all apart. 



Page 20/22 

21) OK, the “saving” part is now officially ready. It’s time to set up the loading system… But, 

first of all – save your work. Got it? Great, let’s move on then. As it was said – let’s do the 

loading part! 

 

IF: [button_load] > Button clicked? 

THEN: [main_array] > Files > Load array from file 

   << click on the “Expression” button >> 

   < input:   "C:\test_save"+Str$(SaveSlot)   > 

   << this action loads the selected savegame >> 

THEN: [red_square] > Position > Set X Coordinate 

   < input:   ValueAtXY( "main_array", 1, 1)    > 

   << sets the “red_square’s” X coordinate to the saved value >> 

THEN: [red_square] > Position > Set Y Coordinate 

   < input:   ValueAtXY( "main_array", 1, 2)    > 

   << sets the “red_square’s” Y coordinate to the saved value >> 

THEN: [blue_square] > Position > Set X Coordinate 

   < input:   ValueAtXY( "main_array", 2, 1)    > 

   << sets the “blue_square’s” X coordinate to the saved value >> 

THEN: [blue_square] > Position > Set Y Coordinate 

   < input:   ValueAtXY( "main_array", 2, 2)    > 

   << sets the “blue_square’s” Y coordinate to the saved value >> 

THEN: [Special Object] > Change a global value > Set 

   < Set  WhichTurn  to   ValueAtXY( "main_array", 3, 1)   > 

   << restores the turn order from the savegame >> 

THEN: [random_number_counter] > Set counter 

   < input:   ValueAtXY( "main_array", 3, 2)   > 

   << restores the “random_number_counter’s” saved value >> 

 

 

22) And here’s the final event – yep, dear Clickers, the last one in this tutorial! Just add this 

one to your code, save it and test the whole thing!  

 

IF: [Storyboard Controls] > End of Application 

THEN: [slots_array] > Write > Write String to X 

   < input this:   SlotName1 > 

   < X index:  1   > 

   << this stores the name that was given to savegame slot 1 >> 

THEN: [slots_array] > Write > Write String to X 

   < input this:   SlotName2 > 

   < X index:  2   > 



Page 21/22 

   << this stores the name that was given to savegame slot 2 >> 

THEN: [slots_array] > Write > Write String to X 

   < input this:   SlotName3 > 

   < X index:  3   > 

   << this stores the name that was given to savegame slot 3 >> 

THEN: [slots_array] > Write > Write String to X 

   < input this:   SlotName4 > 

   < X index:  4   > 

   << this stores the name that was given to savegame slot 4 >> 

THEN: [slots_array] > Write > Write String to X 

   < input this:   SlotName5 > 

   < X index:  5   > 

   << this stores the name that was given to savegame slot 5 >> 

THEN: [slots_array] > Files > Save array to file 

   << click on the “Expression” button >> 

   < input:   "C:\test_saveslots"   > 

     << this saves a file containing the names of the savegame slots >> 

 

 

Ready for a test drive? I surely am. Let’s test it then! I dunno’ how your project ended up, but 

mine’s working perfectly, just the way it’s supposed to. All I can say is this: success! 

 

 

 

      Need encryption? 
 

• Want to beef up security of your savegames? Use the Blowfish object to encrypt 

them! In just a few simple clicks you can use Blowfish’s binary encryption algorithm 

to make sure that no one is getting any extra HP thanks to a little hacking. You’ll find 

more about Blowfish and other MMF2 objects in the upcoming tutorials. 

 

 

 

And that’s the way the cookie crumbles, folks!   

 

Congratulations, lad, you’ve just completed the “Engine Works: Saving & Loading” tutorial! 

Hope that you found it both educative and enjoyable. There’s a lot more to MMF2 than just the 

features presented here – and you can be sure that we’ll soon venture on yet another 

expedition to the wonderful world of multimedia-fusioning! And in the meantime – if you 

haven’t done that yet – check the other tutorials on Clickteam’s website, visit the forums or just 



Page 22/22 

drop me an e-mail with any questions you might have! And always, always, always remember: 

practice (really) makes perfect! 

 

Thanks for your time and see you again soon! 

 

Cheers! 

 

 
marchewkowy@gmail.com  

 
 
 
 

If you have any questions, suggestions or just need help – 

 mail me at marchewkowy@gmail.com 

 

 

 

 

 

 

 

 

 

 

 

 

 


