
Page 1/24

You may not use this tutorial for any other purpose than learning, working or

having fun... In other words: You can use this PDF tutorial for anything you’d like,

as long as it doesn’t involve both a hammer and a squirrel.

marchewkowy@gmail.com

Page 2/24

Welcome, young detect ives!

Welcome to another one of Koobare’s little tutorials, teaching you – as always – how to

effectively and efficiently use the best multimedia authoring tool ever – Multimedia Fusion 2

by Clickteam! This tutorial is meant for beginner intermediates, people who already played with

a couple of projects in MMF2 and know their way around the interface and Fusion’s basic

features. Take a look at this simple lesson guide to help you decide which tutorials should be

played with first and which should be left for later (note that this is just a suggestion):

MMF2 Interface: Interface Guide + Image Editor Guide First time with MMF2

Basics: Smelly Claw tutorial Beginners

Game tutorials: Glob Wars and/or Risky Waters Beginners

Game tutorials: You’ve Got Spacemail! Beginner-intermediates

You are here → The Mystery of Paris Beginner-intermediates

Next: Castle Defender and/or Space Corsair Beginner-intermediates

Next: Save & Load tutorial Intermediates

In this tutorial we will create a nice-looking “Hidden Object” game, in which the player has to

locate items concealed somewhere on the screen. This type of games – known also as the

“Seek and Find” or “Screen Detective” games – have become the hottest casual playthingies

during the last few years, with a bunch of game design companies releasing literally hundreds

of such titles every year.

Our story begins…

Johnny MacCullagan was a homicide detective for the Los Angeles Police Department – one

of the best in his line of job, even if a bit hot-tempered. He left no crime unpunished, no

murderer ever walked the streets again after Johnny brought him to interrogation and dived

deep into evidence. A fatal accident at the precinct – in the course of which he lost his left ear –

unfortunately cost him his job… But Johnny decided to carry on, opening a Private Eye

agency, promising to solve any case for a nominal fee.

For three years he bounced from one divorce case to another, spying on wives and husbands

alike, devoid of the thrill that kept him going during his LAPD years. He began to feel bored,

gained some weight and even thought about closing down the business to open up a nice bar

or sumthin’, when SHE appeared at his door, asking for help.

Page 3/24

Her curls were red like gas-fueled flames, eyes glittered in the noontime sun, her voice

sounded like that of an angel… She introduced herself as Gabriella Paris, a true damsel in

distress, looking for someone who could find her kidnapped brother. Joshua Paris, who

traveled to the capital of France three years ago, went missing last week. His New York

apartment was ransacked, rummaged through by someone looking for something in a real

hurry. Johnny gave Gabriella a reassuring roguish smile and accepted the assignment with the

words he always wanted to say out loud: “I’m on it, like ants on a piece of blueberry pie”.

It didn’t take him long to arrive at Paris. Not knowing even a word in French -- aside from

“merci”, that is – he felt as alienated as one could be, not even knowing where to go to rent a

room or how to order a cup of milk. He decided to focus on the task at hand, leaving sight-

seeing for later – Gabriella wrote him Joshua’s work address on a small piece of paper that he

kept in his pocket. He gave the little note to a taxi driver and soon arrived at the doors of the

Lewis, Pegg & Paris Smirking Eagle Company, a mysterious import-export corporation

specializing in antiques and art, which actually wasn’t registered in France, or even in Europe –

the records showed that the company didn’t even have an European address, since it was

founded and based in South America. It seemed that no one was at the office, with the doors

locked down with a chain and a padlock.

Johnny wasn’t one of those types that would sit around and wait for someone to arrive, while

poor Joshua was out there, most probably kept captive, perhaps even at gunpoint. With the

help of a set of lockpicks that he always carried around with him, he got inside the building,

traversing its dark, long corridors. Something wasn’t right here – Johnny had a hunch that this

Page 4/24

case was going to turn into something ugly and really fast. Everywhere he looked, there was a

disturbing image of a smiling eagle – the main hall was full of bird sculptures, some of them

placed on knee-high columns, with the walls painted in such a way, that you could see a pair of

winged creatures everywhere you looked.

He finally found Joshua’s

room, ready to collect

some random samples

and pieces of evidence

that could help him

decipher this bizarre

case. He was going

through Joshua’s books –

mostly about uncommon

American birds, forgotten

ancient rituals and Aztec

mythology – when he

heard a familiar sound, fathoming in the distance… Police sirens! Someone called the police,

trying to frame him into whatever happened here and Johnny was pretty sure that they would

be storming in at any time now. All he had was sixty seconds – no more than a minute to gather

everything that could be useful to unravel the mystery of Joshua’s disappearing.

“I need to take some random stuff to check out fingerprints”, he instructed himself. There was a

book about eagles, a globe-shaped ball, a wrench and a bunch of other stuff laying around. “All

of this could be useful!”, Johnny said to himself, as the sirens became louder and louder. There

was no more time… He had to grab everything and get out as fast as possible…

What we’re going to create…

So, you now know the story behind our little game, now it’s time to lay out what exactly are

we trying to achieve here… The basic concept goes like this: the player has exactly 60

seconds (measured down by a counter) to gather up 11 objects thrown around the room. He

does so by clicking on them with his left mouse button – if he clicks on an object, it disappears

from the room and it’s name is scratched out from the list that can be found on top of the

screen. Some items are named in such a way that the player has to guess what exactly does

the name from the list represent (for example: “Earth” means a globe-shaped ball, whereas

“Statue” is a cut-out cardboard Statue of Liberty placed on a painting).

Page 5/24

To add a nice graphical effect to our little game, we’ll use a Lens object, set to standard,

unaltered preferences – when it will be combined with another object (just a simple active

object that will be positioned on top of the lens), it will resemble the well-known detective tool

used by the world’s most famous investigators, from Sherlock Holmes to Mr. Hercules Poirot –

a magnifying glass. Trust me – with just two or three lines of code, this will add a really nice

touch to our project.

And – talking about nice touches – let’s not forget about other graphical improvements that

we’re going to introduce into our game. First of all, every time the player clicks on one of those

eleven clickable items, they will disappear in a blast of light, exploding and fading out of the

screen. The lines that will be used to “scratch out” the items from the to-do list will use a fade-

in, which will make them look animated, even though they only have a single frame of

animation. The third and last thing – we will use a semi-transparent object (it’s transparency will

be image-based, we won’t use MMF2’s native Ink Effects this time) with a simple jiggle

animation to cover the title of our game and make it a bit more attention-grabbing.

Two more things to add here: a word about counters and a second one about sound. Yeah,

there will be more counters than just the timer one – another one will be used for counting

down how many pickupable items are there still in play, and a third one will be used to delay

the final jump to another frame, after the player singled out all the required stuff. As for the

sound: we’ll use the sounds and music provided on MMF2’s Bonus disc to enhance the overall

feel of the game. You’ll see what I mean in a few minutes – let’s carry on, detectives…

 If you have any problems with this tutorial, or notice that there are some

mistakes present, please, contact me and I’ll do my best to help you and

replace all the errors with correct information.

 Contact me at: marchewkowy@gmail.com

 Note: I’ve been receiving some reports that not all e-mails get to me for some

reason. Seems that some of them (quite a lot) end up in my spambox or are

blocked out by the server. I dunno why this is happening, so if you’re experiencing

any difficulties with delivering me a message or haven’t received a reply in quite some

time, please, send me another e-mail at marchewkowy@wp.pl, making sure that its

title begins with “To Koobare:”. I’ll do my best to check both these e-mails regularly.

Page 6/24

Part I: Setting up the application.

As we usually do, we’ll start off simple, with the most basic task all MMF2 users have to do

from time to time – in other words, I’ll show you how to create and set up our app. If you

already know how to do this and are worn-out by such a basic approach, just head to Part II of

this tutorial (just scroll down). This section is meant for the newbies, so you don’t have to waste

your time here if you’re more of a beginner-intermediate user.

Anyways, let’s do this… Open Multimedia Fusion 2,

create a new application and save it onto your drive

(remember that it’s always a neat idea to have the

Autobackup option of MMF2 turned on – check your

MMF2’s Preferences). Rename it to “The Mystery of

Paris”. Now, go to your application’s Properties

window (if it didn’t open up by itself, right click on

your application’s name in the workspace toolbar and

select Properties from the drop-down menu), and

select the Window tab (second from the left). Set the

window size to 800x600 (it’s one of the default sizes,

so you can select it from the quick-selection drop-

down). If MMF2 asks you if you’d like to modify the

size of the existing frame as well, select “Yes”. If it

doesn’t ask you by itself, open up the Storyboard

Editor and change the size of the frame to 800x600.

Rename the frame to “The Mystery of Paris” (if

you’re planning on adding some of your own levels

later on, rename it to something easily

systematizable, for example “Level 1”).

 Interested in one game type in particular? Would like to learn about something

that hasn’t been covered in any of the released tutorials yet? Got an idea that

could interest other tutorial-readers? Just drop me an e-mail!

 Contact me at: marchewkowy@gmail.com or marchewkowy@wp.pl

Page 7/24

Part II: Making your life a bit easier…

In one of my previously created tutorials – the

“You’ve got Spacemail!” one – I’ve explained in

detail why I’ve decided that in part two of every

beginner-intermediate and intermediate level

tutorials we will dump everything we created in

the optional part one of the tut (which was just

for the sake of showing you how it’s done) and

open up a pre-prepped app, which will be used

as a base for our project.

Let’s not waste time on organizational issues,

since you can find the reasoning behind this in

the previously mentioned Spacemail-tut… To

continue, just close what you’ve done so far (if

you actually didn’t just skip section one) and

open the mystery-of-paris-basis.mfa file.

If you’re wondering where can this file be located, just take a look at the directory where you’ve

unpacked the PDF tutorial that you’re currently reading – both these files were zipped into the

same archive, so you’ve most probably unpacked them to the same file folder.

 Please note: most of the objects used in this tutorial use alpha channels, a

 feature that is unfortunately unavailable in Games Factory 2 (TGF2 users

 should use basic library objects or create their own graphics instead –

 I generally would advise you to upgrade to MMF2 as soon as possible,

 since you are missing out on some really good stuff, a lot of quite impressive

 and useful features and additional objects).

 Full game: the finished tutorial game is included in the same archive.

Page 8/24

Part III: Investigation.

Once you’ve opened our basis application, the foundation on which we’re going to build our

game, go right into the first frame and take a look around (for those of you who relish for a bit

more drama: try to do it in slow-motion, while flying through the air, Max Payne-style). There’s a

whole gang of objects laying around, looking really pretty, just waiting for you to script them all

together into a nice, simple, “Hidden Object” game.

Your Frame Editor should look somewhat like this right now:

Notice that all objects have been conveniently placed to their proper positions… Having said

that, there’s no problem with moving them around – you may move the Earth-shaped ball more

to the right or drop the monitor screen on the floor, and the game still will work properly.

Anyways, let’s leave all these objects as they are right now and move on, I’m sure you can’t

wait to dive into the programming part of this tut…

Page 9/24

Yet, before we can move on to the scripting, we should firstly learn all there is to know about

the objects used in our application – what will they be used for, which ones have a fade-in

transition, what are their basic preferences… That kind of stuff. Below you can find an

alphabetical list of all the objects, with their short description:

Object’s name: So… What is it?

backdrop.photo

The background for our game.

W H Y I T ’ S H E R E ?

In most games I would describe this thingie as “just a
background object”, but in this particular game it’s an essential
part of the gaming experience...

First of all, this is basically the main thing the player sees
throughout the whole level… There are no jumping spacemen,
hovering helicopters, dashing sports cars and other animated
stuff rushing through the screen… In other words: no
distractions.

Secondly, the quality of the main backdrop and its details are
basically responsible for the difficulty of our game: the more
details, the more objects laying around, the more difficult it will be
to find the right items before the time runs out.

The backdrop of our game is basically a still image of Joshua’s
office interior: there are some chairs, a couch, a table, couple of
lamps, two windows… Basically: there would be nothing special
about this place if it wasn’t for the slightly overcontrasted black &
white style in which the apartment is presented, adding a strange
feeling of an unknown menace or at least a “classic story”-feel,
similar to the art style of the Bogart-era (just think about
“Casablanca” or “The Maltese Falcon”).

counter.hidden

A hidden counter used for controlling our game and its frames.

P R O P E R T I E S

It is set as a hidden counter. Its Initial and Maximum Values
are both set to 3, its Minimum Value is set to 0.

W H Y I T ’ S H E R E ?

Because we need a simple solution for delaying the frame-
jumping event once all the objects are found.

H OW D O E S I T W O R K ?

Well, it’s a pretty simple system, really… Once all the required
items have been picked up by the player (and, thus, the objects
counter has a value of zero), this counter looses 1 in value with
every second that passes.

You don’t have to be a mathematical genius to find out that this
will give us a 3-second interlude once all the objects have been
singled out (since its Initial Value is set to 3).

Page 10/24

This will give us just the right amount of time to play a nice
victory-related sample and then – once this counter is down to
zero – jump to the next frame of our application. Please note that
I’ve used a counter for this just to make things easier and clearer
– you could use the Timer object or a Global / Alterable values as
well.

counter.objects

Another counter, this one counts how many items are left in the
frame.

P R O P E R T I E S

It is set as a Numbers counter (with the images imported from
external files). Its Initial and Maximum Values are both set to
11, its Minimum Value is set to 0.

W H Y I T ’ S H E R E ?

Because it’s simpler to place this counter in the frame than to
check on every loop how many pickupable items are left in the
frame. Furthermore, this also has an informative function, as the
player can used it to check how many more items does he still
needs to locate.

H OW D O E S I T W O R K ?

It starts with its current value set to 11, which is then decreased
by 1 every time the player picks up one of the scattered items.
Once it’s down to 0, the time countdown stops and the hidden
counter countdown begins (giving the player three seconds to
say goodbye to the level before being transported to the next
one).

counter.time

Our timer – a counter that counts down time.

P R O P E R T I E S

It is set as a Numbers counter (with the images imported from
external files). Its Initial and Maximum Values are both set to
60, its Minimum Value is set to 0.

W H Y I T ’ S H E R E ?

Because we need to have a way of telling how many seconds
have passed since the player started searching for all those
concealed items… Or rather how many time does he have left
before the police storms into the room and he officially looses.

H OW D O E S I T W O R K ?

It is initially set to 60, which is decreased by 1 on every second
that passes (only if there are still items to be picked up – if the
player has already clicked them all, the time counter is stopped).

Lens

The Lens object – used for our little magnifying glass.

P R O P E R T I E S

All properties are set to default (which means that the Initial lens
effect is set to Zoom, the Multiplier is set to 1.0 and the
Autoupdate option is ON).

Page 11/24

W H Y I T ’ S H E R E ?

Because we want a nice-lookin’ magnifying glass for our Private
Eye.

H O W D O E S I T W O R K ?

The Lens object, created by Anders Riggelsen, is basically used
to distort everything placed beneath the lens object like if it was
seen through a piece of glass, or, well, a lens – this effect is
controlled by the usage of a grayscale gradient object, which can
be easily edited or imported from outside of MMF2. We use the
basic, default “grayscale circle” object, since it perfectly suits our
needs.

magnifying.glass

A metal circle (active object), used to create our magnifying
glass.

W H Y I T ’ S H E R E ?

Because our magnifying glass cannot be made of a single lens,
can it? Surely not – it needs a nice metal-lookin’ border!

H O W D O E S I T W O R K ?

Both the Lens object and this one are always positioned at the
player’s mouse coordinates (always displayed in the same place
as the player’s cursor). Thanks to this – and to the fact that this
object is always placed on top of the Lens – we are able to
secure a nice magnifying glass that follows the mouse cursor on
real time.

menu.bar

The name says it all – our menu bar (a backdrop object).

W H Y I T ’ S H E R E ?

Because we could really use a menu bar, I guess. It’s a backdrop
for our counters and it contains the list of pickupable items.

Page 12/24

object.book
and object.bullet
and object.clock
and object.coins
and object.eagle
and object.earth
and object.screen
and object.seashell
and object.skull
and object.statue
and object.wrench

Our pickupable items – the stuff the player needs to find.

W H Y I T ’ S H E R E ?

Well, this game is all about picking up strange items, so it’s a
pretty guaranteed thing that there should be such in our frame,
right? To be exact: there are eleven of them, check the menu.bar
item to find the whole list (or just take a look to the left).

H OW D O E S I T W O R K ?

Player clicks them, they are destroyed, another line is scratched
out from the items list… And that’s it.

T R A N S I T I O N S

The fade-out transition of all these objects is set to “Fade” (2.3
seconds).Thanks to this they fade away into air after being
picked up by the player (and, oh, there’s also a bright explosion,
but we’ll get to that part in a few seconds).

scratched.out

Black lines that are “scratching out” the items from our to-do list.

W H Y I T ’ S H E R E ?

To help us show which objects have already been found, by
covering up their names on the menu bar list.

H OW D O E S I T W O R K ?

It’s as simple as they get: once an item is located by the player,
he clicks on it, it disappears, and this little thingie is created on
top of the name representing the clicked item.

T R A N S I T I O N S

To make it appear as if someone really “scratches out” the
names from the list, I’ve added a simple fade-in transition to this
object. The fade-in transition is set to “Bands” (0.67 of a
second, coming from left to right).

text.objects

Just a small alpha-blended Backdrop object.

W H Y I T ’ S H E R E ?

To help us easily distinguish the items counter from the time
counter – it says “objects left” after all…

text.time

Another little Backdrop object with some text on it.

W H Y I T ’ S H E R E ?

It does the same thing as the previously characterized object, but
this one says “time left” and is placed over the time counter.

title.flash

A small animation to make the title look better.

W H Y I T ’ S H E R E ?

A semi-transparent jiggling animation that is placed on top of the
game’s title (on the menu bar) – check out it’s simple animation.

Page 13/24

white.blast

A nice-lookin’ white explosion.

W H Y I T ’ S H E R E ?

To make the game look better – once an item is clicked, it
doesn’t just disappear into thin air, it actually explodes with a
great-looking burst of light.

H OW D O E S I T W O R K ?

This little animated object is created on top of an item that has
just been clicked by the player. Once it’s animation is over, it is
destroyed, disappearing from the frame.

T R A N S I T I O N S

The fade-out transition is set to “Zoom” (0.22 of a second).

A word about alpha-channeled objects

As a developer greatly concerned about the audio-visual side of my projects, I tend to use a lot

of alpha-channeled objects – actually, I’m not that into pixel art, so I use them every time I

create something, always playing with transparencies and blending. The thing that I wanted to

emphasize here is that this game wouldn’t look so good if it wasn’t for alpha-channels, helping

us to make it harder to distinguish between a separate object and the background of the game.

Part IV: It’s in the code.

It’s now time for the scripting part – my personal favorite! Save your project (always remember

to save it from time to time!) and open up the Event Editor. If you’re new to my tutorials, let

me introduce you to the event-recording system that I use. If you know it already – just skip this

frame below and quickly move on to the coding part:

Koobare’s MMF-to-paper coding system

Basically, it goes like this:

 IF (Condition): [Object for the condition] > Condition group > Condition

 THEN (Action): [Object for the action] > Action group > Action

Seems simple, right? Well, that’s just because IT IS simple. All the conditions are

marked in red, while actions are written in fancy blue.

Page 14/24

Object names are always put in [square brackets]. The final condition/action is

always in Italic. If we’ll have a multi-condition event, then it’ll be like this:

 IF (Condition 1): [Object for condition 1] > Condition group 1 > Condition 1

 IF (Condition 2): [Object for condition 2] > Condition group 2 > Condition 2

 THEN (Action): [Object for the action] > Action group > Action

Whereas a multi-action event looks like this:

 IF (Condition): [Object for condition] > Condition group > Condition

 THEN (Action 1): [Object for the action 1] > Action group 1 > Action 1

 THEN (Action 2): [Object for the action 2] > Action group 2 > Action 2

If you’ll have to input anything by keyboard, it will be indicated by coloring the text

green and using < angle brackets >, like this (this marking will be soon obsolete):

 < Set the Global Value A to 32 >

Additional comments, instructions and info will be put in << double angle

brackets >>, using a different color (this marking will soon be also used for input):

 << Select any wave sound from the MMF2’s sound library >>

From time to time I’ll also use this style to throw in some extra tips and tricks

about MMF2 and more advanced coding techniques. All you have to do is to go

step-by-step through all the listed events and keep one eye on your Event Editor,

and the second one on this tutorial…

Let’s unravel this mystery!

1) Firstly, let’s start off with the conventional “Start of frame” event, which I usually create at

the very beginning of the events list (seems pretty logical, right?). This event – triggered when

someone starts our game – will initiate our music track, nothing more, nothing less. I’ve found a

perfect little piece of music on MMF2’s Bonus disc, in the \Samples\Music\Magic & Drama

folder, but you can of course choose something different if you wish:

Page 15/24

IF: [Storyboard Controls] > Start of frame

THEN: [Sound Object] > Samples > Play and loop sample

<< Choose the “Mysterious Dungeon.wav” sound, loop it 0 times, which means infinitely >>

Got it? Great! That means that we’ve got our first event up and ready, even if it’s a very petite

one. Never underestimate the meaning of a game’s soundtrack, though…

2) Time for our second event! This one will be as simple as our first one, and will basically play

a little sample every time the player clicks with his left mouse button:

IF: [Keyboard & Mouse Object] >> The Mouse >> User clicks

<< select: LEFT BUTTON, SINGLE CLICK >>

THEN: [Sound Object] >> Samples >> Play sample

<< Choose the “Drip 4.wav” sound, from \Samples\Impacts >>

3) It’s now time for a series of more “serious” events, establishing what will exactly happen if

the player clicks on one of the pickupable items:

IF: [Keyboard & Mouse Object] >> The Mouse >> User clicks on an object

<< select: LEFT BUTTON, SINGLE CLICK >>

<< choose the [object.statue] object >>

THEN: [object.statue] >> Destroy

THEN: [Create New Objects] >> Create Object

<< Select the [scratched.out] object >>

<< Set the coordinates to x=558, y=30 >>

Page 16/24

THEN: [Create New Objects] >> Create Object

<< Select the [white.blast] object >>

<< Set the coordinates to x=-5, y=9, relative to [object.statue] object >>

THEN: [counter.objects] >> Subtract from Counter

<< input: 1 >>

THEN: [Sound Object] >> Samples >> Play sample

<< Choose the “VIOLIN1.wav” sound, from \Samples\Music\Jingles >>

Let’s take a closer look at this event: when the player clicks on the Statue of Liberty cut-out, it is

quickly destroyed, it’s name being scratched out from the item list (the “scratched.out” object is

created on top of it), a white blast is created on top of the vanishing item, the item counter’s

value is lowered by 1 and a mysterious violin sample is played in the background…

Everything’s clear, right? Now, let’s do the same for the skull hovering above the window:

IF: [Keyboard & Mouse Object] >> The Mouse >> User clicks on an object

<< select: LEFT BUTTON, SINGLE CLICK >>

<< choose the [object.skull] object >>

THEN: [object.skull] >> Destroy

THEN: [Create New Objects] >> Create Object

<< Select the [scratched.out] object >>

<< Set the coordinates to x=763, y=43 >>

THEN: [Create New Objects] >> Create Object

<< Select the [white.blast] object >>

<< Set the coordinates to x=0, y=5, relative to [object.skull] object >>

THEN: [counter.objects] >> Subtract from Counter

<< input: 1 >>

THEN: [Sound Object] >> Samples >> Play sample

<< Choose the “VIOLIN2.wav” sound, from \Samples\Music\Jingles >>

And here’s one for the eagle statue:

IF: [Keyboard & Mouse Object] >> The Mouse >> User clicks on an object

<< select: LEFT BUTTON, SINGLE CLICK >>

<< choose the [object.eagle] object >>

THEN: [object.eagle] >> Destroy

THEN: [Create New Objects] >> Create Object

<< Select the [scratched.out] object >>

<< Set the coordinates to x=531, y=31 >>

THEN: [Create New Objects] >> Create Object

Page 17/24

<< Select the [white.blast] object >>

<< Set the coordinates to x=1, y=-1, relative to [object.eagle] object >>

THEN: [counter.objects] >> Subtract from Counter

<< input: 1 >>

THEN: [Sound Object] >> Samples >> Play sample

<< Choose the “VIOLIN3.wav” sound, from \Samples\Music\Jingles >>

Here’s the computer screen object…

IF: [Keyboard & Mouse Object] >> The Mouse >> User clicks on an object

<< select: LEFT BUTTON, SINGLE CLICK >>

<< choose the [object.screen] object >>

THEN: [object.screen] >> Destroy

THEN: [Create New Objects] >> Create Object

<< Select the [scratched.out] object >>

<< Set the coordinates to x=583, y=31 >>

THEN: [Create New Objects] >> Create Object

<< Select the [white.blast] object >>

<< Set the coordinates to x=1, y=-4, relative to [object.screen] object >>

THEN: [counter.objects] >> Subtract from Counter

<< input: 1 >>

THEN: [Sound Object] >> Samples >> Play sample

<< Choose the “VIOLIN4.wav” sound, from \Samples\Music\Jingles >>

Aaaand here’s one for the alarm clock:

IF: [Keyboard & Mouse Object] >> The Mouse >> User clicks on an object

<< select: LEFT BUTTON, SINGLE CLICK >>

<< choose the [object.clock] object >>

THEN: [object.clock] >> Destroy

THEN: [Create New Objects] >> Create Object

<< Select the [scratched.out] object >>

<< Set the coordinates to x=623, y=37 >>

THEN: [Create New Objects] >> Create Object

<< Select the [white.blast] object >>

<< Set the coordinates to x=1, y=2, relative to [object.clock] object >>

THEN: [counter.objects] >> Subtract from Counter

<< input: 1 >>

THEN: [Sound Object] >> Samples >> Play sample

<< Choose the “VIOLIN5.wav” sound, from \Samples\Music\Jingles >>

Page 18/24

Another event, this time concerning the bullet left on the table:

IF: [Keyboard & Mouse Object] >> The Mouse >> User clicks on an object

<< select: LEFT BUTTON, SINGLE CLICK >>

<< choose the [object.bullet] object >>

THEN: [object.bullet] >> Destroy

THEN: [Create New Objects] >> Create Object

<< Select the [scratched.out] object >>

<< Set the coordinates to x=604, y=32 >>

THEN: [Create New Objects] >> Create Object

<< Select the [white.blast] object >>

<< Set the coordinates to x=0, y=0, relative to [object.bullet] object >>

THEN: [counter.objects] >> Subtract from Counter

<< input: 1 >>

THEN: [Sound Object] >> Samples >> Play sample

<< Choose the “VIOLIN6.wav” sound, from \Samples\Music\Jingles >>

Once again a very similar event, this one is for the seashell laying on the floor:

IF: [Keyboard & Mouse Object] >> The Mouse >> User clicks on an object

<< select: LEFT BUTTON, SINGLE CLICK >>

<< choose the [object.seashell] object >>

THEN: [object.seashell] >> Destroy

THEN: [Create New Objects] >> Create Object

<< Select the [scratched.out] object >>

Page 19/24

<< Set the coordinates to x=727, y=35 >>

THEN: [Create New Objects] >> Create Object

<< Select the [white.blast] object >>

<< Set the coordinates to x=-1, y=-2, relative to [object.seashell] object >>

THEN: [counter.objects] >> Subtract from Counter

<< input: 1 >>

THEN: [Sound Object] >> Samples >> Play sample

<< Choose the “VIOLIN7.wav” sound, from \Samples\Music\Jingles >>

And here goes the book:

IF: [Keyboard & Mouse Object] >> The Mouse >> User clicks on an object

<< select: LEFT BUTTON, SINGLE CLICK >>

<< choose the [object.book] object >>

THEN: [object.book] >> Destroy

THEN: [Create New Objects] >> Create Object

<< Select the [scratched.out] object >>

<< Set the coordinates to x=740, y=41 >>

THEN: [Create New Objects] >> Create Object

<< Select the [white.blast] object >>

<< Set the coordinates to x=-1, y=-4, relative to [object.book] object >>

THEN: [counter.objects] >> Subtract from Counter

<< input: 1 >>

THEN: [Sound Object] >> Samples >> Play sample

<< Choose the “VIOLIN1.wav” sound, from \Samples\Music\Jingles >>

And the dumped wrench…

IF: [Keyboard & Mouse Object] >> The Mouse >> User clicks on an object

<< select: LEFT BUTTON, SINGLE CLICK >>

<< choose the [object.wrench] object >>

THEN: [object.wrench] >> Destroy

THEN: [Create New Objects] >> Create Object

<< Select the [scratched.out] object >>

<< Set the coordinates to x=698, y=37 >>

THEN: [Create New Objects] >> Create Object

<< Select the [white.blast] object >>

<< Set the coordinates to x=-1, y=-1, relative to [object.wrench] object >>

THEN: [counter.objects] >> Subtract from Counter

<< input: 1 >>

Page 20/24

THEN: [Sound Object] >> Samples >> Play sample

<< Choose the “VIOLIN2.wav” sound, from \Samples\Music\Jingles >>

We’re almost done with this series of events… Here’s one for the globe-shaped ball:

IF: [Keyboard & Mouse Object] >> The Mouse >> User clicks on an object

<< select: LEFT BUTTON, SINGLE CLICK >>

<< choose the [object.earth] object >>

THEN: [object.earth] >> Destroy

THEN: [Create New Objects] >> Create Object

<< Select the [scratched.out] object >>

<< Set the coordinates to x=674, y=36 >>

THEN: [Create New Objects] >> Create Object

<< Select the [white.blast] object >>

<< Set the coordinates to x=-3, y=1, relative to [object.earth] object >>

THEN: [counter.objects] >> Subtract from Counter

<< input: 1 >>

THEN: [Sound Object] >> Samples >> Play sample

<< Choose the “VIOLIN3.wav” sound, from \Samples\Music\Jingles >>

And here’s the last one, concerning the pile of coins…

IF: [Keyboard & Mouse Object] >> The Mouse >> User clicks on an object

<< select: LEFT BUTTON, SINGLE CLICK >>

<< choose the [object.coins] object >>

THEN: [object.coins] >> Destroy

THEN: [Create New Objects] >> Create Object

<< Select the [scratched.out] object >>

<< Set the coordinates to x=650, y=36 >>

THEN: [Create New Objects] >> Create Object

<< Select the [white.blast] object >>

<< Set the coordinates to x=-1, y=-3, relative to [object.coins] object >>

THEN: [counter.objects] >> Subtract from Counter

<< input: 1 >>

THEN: [Sound Object] >> Samples >> Play sample

<< Choose the “VIOLIN4.wav” sound, from \Samples\Music\Jingles >>

Got it? Great! That means we’re done with our pickupable items. All we need now are seven

more events and we’ll have our game up and running!

Page 21/24

Here’s what we’ve got so far (don’t panic if isn’t exactly the same as in your Event Editor):

Looks neat, right? Let’s get going then…

4) This little event will be responsible for destroying the “white.blast” object once its animation

has finished:

IF: [white.blast]>> Animation >> Has an animation finished?

<< select “Stopped” >>

THEN: [white.blast] > Destroy

5) Time for our “Always”-conditioned event, one that happens on every loop, no matter what.

This event is actually all about positioning – it repositions the “Lens” and “magnifying.glass”

objects so that they always follow the player’s cursor, and then brings them to front, so that

they won’t be covered by the white explosion we create in earlier events:

IF: [Special Object] > Always

THEN: [Lens] > Position > Set X position

<< input: xmouse >>

THEN: [Lens] > Position > Set Y position

<< input: ymouse >>

THEN: [magnifying.glass] > Position > Set X position

<< input: xmouse >>

THEN: [magnifying.glass] > Position > Set Y position

<< input: ymouse >>

THEN: [Lens] >> Order >> Bring to front

THEN: [magnifying.glass] >> Order >> Bring to front

Page 22/24

6) Here’s a simple, yet crucial event – the one controlling our timer…

IF: [The Timer Object] >> Every

<< Set the timer to 1 second >>

IF: [counter.objects] >> Compare the counter to a value

<< compare whether it is Different than 0 >>

THEN: [counter.time] >> Subtract from Counter

<< input: 1 >>

7) Out of time? Sorry, bub, that means you’ve officially lost…

IF: [counter.time] >> Compare the counter to a value

<< compare whether it is Equal 0 >>

THEN: [Storyboard Controls] >> End the application

8) But if you’ve gathered all the required items, you’re gonna’ hear a nice little victory sound…

IF: [counter.objects] >> Compare the counter to a value

<< compare whether it is Equal 0 >>

IF: [Special Object] >> Limit conditions>> Run this event once

THEN: [Sound Object] >> Samples >> Play sample

<< Choose the “MUSPIAN5.wav” sound, from \Samples\Music\Jingles >>

9) …and then you’ll have no more than three seconds to say goodbye to this level…

IF: [counter.objects] >> Compare the counter to a value

<< compare whether it is Equal 0 >>

IF: [The Timer Object] >> Every

<< Set the timer to 1 second >>

THEN: [counter.hidden] >> Subtract from Counter

<< input: 1 >>

10) …until you move on to the next one. Of course, if there will be a next one…

IF: [counter.hidden] >> Compare the counter to a value

<< compare whether it is Equal 0 >>

THEN: [Storyboard Controls] >> Next frame

You know what? That was our last event…

Page 23/24

That’s it! Congratulations!

Yes, you’ve done it, detective! You’ve solved the case of this tutorial… But there is still a great

mystery lingering around the corner: the one with all the eagles, with Joshua Paris and his

business partners, with worried Rebecca waiting for any news about her missing brother… The

one in which Johnny MacCullagan may need your help. Think about it and try to build new

levels, finish this story on your own, helping Johnny to uncover an evil scheme of epic

proportions. It’s all up to you, Fusioner… It’s all up to you.

Thanks for your time and see you again soon!

Cheers!

If you have any questions, suggestions or just need help –

 mail me at marchewkowy@gmail.com

To answer a question that I find in my e-mail box ever so often: yes, I can help

you with your game, create you some graphics, design your levels, draw you a

menu screen and write you a story… But I cannot do it for free – I actually

upkeep myself from my designing, so there’s no chance for that. But if you’ve

got some spare cash, you can hire me to create whatever you’d like, you’ll

receive vehicles, monsters, explosions, dialogues and whatever else you need.

I’m a designer mercenary and I’m always for hire.

All copyrighted materials, names, titles, images and visualizations (as “Max Payne” etc.) belong

to their respective owners and are used here exclusively as a parody or a satirist fan tribute – no

copyright infringement intended.

Page 24/24

You have been reading…

Created for Multimedia Fusion 2 & Multimedia Fusion 2: Developer

Always be sure to have your MMF2 up-to-date!

