RISKY

WATERS

a Multimedia Fusion 2 tutorial

A'Risky Waters
File Options Help

<

2>

You may not use this tutorial for any other purpose than learning, working or
having fun... In other words: You can use this PDF tutorial for anything You’d like,
as long as it doesn’t involve both a hammer and a squirrel.

Koobare

marchewkowy@gmail.com

Page 1/19

Hi there, all!

Welcome to another one of Koobare’s little tutorials (been a while...), teaching you how to

effectively and efficiently use the best multimedia authoring tool ever - Multimedia Fusion 2 by

Clickteam! This tutorial is meant for intermediate beginners, people who are still a bit new to the
fascinating world of MMF2 — if you're a bit more experienced Clicker, just skip this tutorial and
take a look at the other ones that can be found on Clickteam’s website... Unless, of course, you

don’t mind a bit of repetition and a few things that can be old news for ya’.

We'll start off simple, introducing you to the basic features of MMF2... But believe me: you'll
soon find out that with basic features alone Multimedia Fusion 2 is the best tool in it’s category.
A simple “Sink the Sub!” game for now, but there’s plenty ahead of you — adventure and
roleplaying games, advanced platformers, turn-based tactics, multimedia presentations,
screensavers and... Well, let’s skip the listing part, | don’t have enough time on my hands. Just
believe me when | tell you this: you can do ANYTHING with MMF2, you just need a clear vision
of what you’re trying to accomplish and a bit of experience to get there. And — as far as

experience is concerned — that’s exactly what you need this tutorial for, right?

So, no more motivational

chit-chat for now - let's
gather up, listen up and

create a plan! Our goal? To

create “Risky Waters”, a
fun-to-play arcade game,
with exactly 23 events

coded in the Event Editor.
@ The storyline for our game
e is pretty simple, but this

shouldn’t bother you too

much — this is supposed to
be an arcade game after
all. Our player will become a captain of Sub Hunter 3000, a super-advanced ship created solely
for the purpose of... Well, hunting down subs. And that’s it. No interstellar trips here, but | hope

you weren’t counting on any? Now, prepare your gear!

Torpedoes away, captain!

Page 2/19

To sum it all up — here are some core features of the project we’re going to complete:

o We’re going to create a good-lookin’ arcade game about hunting down submarines.

e Our player will control a single ship — Sub Hunter 3000 — capable of dropping depth
charges into the ocean. Depth charges will explode on impact, but it will take a couple of
them to sink a single submarine.

e The number of depth charges will be limited, but rechargeabile.

e Enemy submarines won'’t be helpless — they can release numerous submerging water-
mines, which will explode on collision with either the player's depth charges or the his
ship. If they won’t hit anything on their way — they’ll float on the surface for a short time,

before exploding.

If you have any problems with this tutorial, or notice that there are some
mistakes present, please, contact me and I'll do my best to help you and

replace all the errors with correct information.

Contact me at: marchewkowy@gmail.com

Part I: Setting up the application.

It's time to have some fun! Open Multimedia Fusion 2, Properties - Risky Waters . x
create a new application and save it onto your hard L= =2

drive (it's a pretty good thing to have the “Autobackup’ | window o)
option of MMF2 turned on — check your “Preferences”). :::jer color Fqu;;;af 255, 255, 255
Go to your application’s Properties window (if it didn’t ﬁ_:."':;;ding

open up by itself, right click on your application’s name IV Heading when maximized

| Disable Close button

in the workspace toolbar and select “Properties” from Mo Minimize box

Mo Thick frame
Maximized on boot-up
[Hidden at start

=
the drop-down menu), and select the Window tab I[o Feimis 2ot
(second from the left). Set the window size to 600x480. I

When that’s done, create your first frame (make it's size

Menu...

identical to the size of our window: 600x480) and ¥ Venuber || Edit J
|v Menu displayed on boot-up

continue to part two of this tutorial. Windowe Menu Inds 0

Page 3/19

Part Il: Importing objects

So, we’re creating a game about a boat that drops depth charges into the ocean and tries to
sink a submarine, right? So where the heck is that boat? And those depth charges? And the

submarine? Huh, we don’t even have anything that looks like an ocean, right?

Not a problem, though. I've got all those objects prepared for you — they are safely waiting in
the “riskywaterslibrary.mfa” file, which was packed into the same archive as this .PDF tutorial.
It's time to import them into our app! Firstly, make sure that you have the “snap to grid” option
turned off (check the “view” menu and search for the [SneptoGrid button). Secondly, find the
aforementioned “riskywaterslibrary.mfa” file and open it. Once it's loaded into your MMF2, open
the first frame from the library file (actually, it should be the only frame in there). Got it? Great!
Arrgh, matey, we’ve got it! ‘Tis a treasure of sorts, for me aching ol’ pirate eyes to see such

beauty! Translation from Piratese to English: here they are, all shining and ready to use!

i Now... Select all the objects available in
Bee ; the library’s frame (press CTRL+A or
o} i s
B ! = select them by dragging a selection field
'
‘ over them), copy them into your

application (CTRL+C, then CTRL+V) and

place them correctly (this shouldn’t be too

tough if you've disabled the “snap to grid’

option — take a look at the image to the

left if you require visual guidance).

Please note: some of the objects use alpha channels, a feature that is
unavailable in Games Factory 2 (TGF2 users should use basic library
objects or create their own graphics instead).

Now, let’s take a look at the objects we’ve just imported. There’s not too many of them, but still
enough to confuse you a bit if you don’t know what's what. That's why I've created this neat

little table for you — just take a look, read through it, and you’ll have all the knowledge needed:

Page 4/19

So... What is it?

A counter that shows how much ammo (depth charges)

o8s
ammo_counter does the player still have. It renews over time.
_}""\\‘ el A big explosion — an animation that is always created when
et something has blown up.
bottom_backdrop 'Tis the bottom of the sea, lad! — a simple backdrop object
set as an obstacle.
Depth charge — player’s projectile, an active object with
(- depth_charge three different animations and two movement sets (Pinball
movement and Path movement).
e health_counter Another counter. Acts as our player’s healthbar — shows

how much mines can our ship take before falling apart.

Additional object that will help us control the whole game — it

high_water is placed right above the “water_QB” object.
Unfriendlies’ projectile — it is shot from the submarine,
. mine contains two movement sets (both are Path movements).
It has an Alterable Value (“Timer’), set to 5.
_ Active object that plays the role of the submarine’s shadow
shadow
— it follows the submarine’s x position.
A Quick Backdrop object (set as a vertical gradient), acting
sky_QB
as the sky.
. A “water splash” effect — it is displayed when player’s depth
splash !
charges hit the water surface.
Player’s ship, set to “Eight directions” movement with only
(8 SubHunter3000 two directions active (left and right). It’s speed is set to 30,
Deceleration to 20, Acceleration to 18 -
'Tis the enemy, lad! Argh! Sink it or you'll be go to the
== Submarine bottom yourself, | tell ‘ya! An active object with two path
movements and a single Alterable Value (“Health”).
water QB A Quick Backdrop object (set to vertical gradient), acting as

the water.

Page 5/19

Part Ill: Taking a break to think it all through

OK, you now know which object does what — and you’re pretty darn ready to code all of this,
right? Wrong! Yeah, you would surely manage to script all the events needed, even now, but
you would also skip an important part of this tutorial — understanding why all of this works the
way it does. Don’t rush to the coding part yet, lad! Take a second to think it all through, to check
all the settings on your own, to explore things a bit. You've got that little explorer inside of ya’,

right? Sure you do — every pirate does! So... Let’'s go exploring!

A thing about multiple movements

Aren’t ya’ just a ‘bitty curious why does
the Submarine object has TWO
movements, as stated above? Or the
mine object? Or the depth_charge one?
Playing with multiple movements isn’t

just fun for fun’s sake — using them really

widens your range of coding possibilities.

Firstly, let's take a look at what

Multimedia Fusion’s 2 Help has to say
about this: “In Multimedia Fusion 2, an
object can have more than one movement. These movements are stored in the object as a list
of movements. For example, the first movement can be a path movement, and the second a
ball movement. With the actions in the event editor, you can switch from one movement to
another’. Pretty simple? Sure. But pretty powerful too. Just think of the things that you can
accomplish with this! Player's movement should change from Eight Directions to Race Car
movement once his spaceship is upgraded? Not a problem! Just set up these two movements
and switch between them (via the Event Editor) when player’s character gets near the Upgrade

Station and a specific key is pressed.

Now, let's get back to our frame and analyze the three aforementioned objects — the
Submarine, mine and depth_charge ones. Firstly, select the Submarine object and go to the
Properties toolbar. Notice that it has a Fade Out animation set up (a smooth Fade to
background, set to 2 seconds). Select the Movement tab (third from the left, the one with the
little man running). This toolbar window consists of three elements: a drop-down list of all

movements set within this object, which enables you to both select the specific movement and

Page 6/19

add/remove new movements (just click on the Movement w R n R 8o

#1 text and an additional button will appear right by the

Movement

list); another drop-down list — titled Type — from which you Mownert ‘”""“’““‘*“

. Type < .-" Path
can select the movement type you want for your object; -

Edit movement

{ Edit J
and an Edit button, which enables you to set the -‘
preferences for the selected movement. Now, select the

first movement (Movement #1 — it should be selected by default), notice that it's type is set to
Path. Click the Edit button.

Somewhere in your frame a new window should appear — the Path Setup window, which

enables you to freely configure your Path movement. It should look like this:

" Path Movement Setup

P B

Ty Movement | [L.OK.|] |Cancel| (. Hep.|

Looks pretty simple, doesn’t it? The first two rectangular buttons (counting from left) can be
used to add new lines to our movement, either by drawing it with singular clicks (first button), or
by taping the mouse movement for as long as the mouse button is pushed (second button).
Buttons further to the right can be used to set the preferences for our movement — at this

moment it is set to reverse the object at the end of the path and loop the whole thing.

Now, take a look at our Submarine object and notice the black line drawn across the frame,

between the two rectangular points:

This is the path that our underwater foe will follow. Pretty simple, right? Click Cancel to close

the Path Movement Setup window — there’s no more to see here.
Now, let's get back to the Properties toolbar. Select the second movement from the list

(Movement #2) — note that it's yet another Path movement — and click the Edit button. Observe

how this movement is different from the first one — Submarine’s path is vertical this time, there’s

Page 7/19

more nodes (not just two), with different path speeds between them. As you have most
probably guessed by now — this movement will be used once the enemy sub is seriously

damaged & sinking, exchanging “hello’s” with the rock-solid sea bottom.

Now, let’s take a look at the depth_charge object, which also has two movements set — one of
them is a Pinball movement, which can be a little confusing at first, but will become obvious in
sheer seconds. As MMF2’'s Help states: “The Pinball movement makes the ball move like a
pinball: a bouncing ball with gravity”, which means that it's a movement that can be used for
anything that needs a bit of a gravitational pull. But why would | apply it to a depth charge?
Well, the reason is pretty straightforward. | want the charge to be thrown — or catapulted — from

the SubHunter 3000, not just released into water. In other words — | want it to look like this:

<o,

...And the easiest and fastest way to do this is by using the Pinball movement. If it was a

00000‘

different multimedia authoring tool you’d most probably had to write at least three lines of code
with at least two mathematical equations to achieve the same effect. But with MMF2, all you

need are three clicks. Long live MMF2, lads! Argh!

If you wish — you can explore the second movement on your own, as well as the two
movements of the mine object — but that’'s not really necessary, since they use the same
pattern as the Submarine object does — Path movements that will be initiated when a condition
is flagged as frue. If you're curious about anything — don’t hesitate to check it out. Take your

time — this PDF document isn’t going anywhere, right?

Here’s a quick list of things that you should be aware of before going further:

e The mine object has an Alterable Value named Timer, set to 5.

e The Submarine object has an Alterable Value named Health, set to 12.

e Both the ammo_counter and health_counter are Animation-type counters with both their
initial and maximum values set to 3.

e The depth _charge, mine, Submarine and SubHunter3000 objects all have Fade Out

animations set up — they’re set to either Fade or Zoom.

Page 8/19

Part lll: It’s time for some coding!

Once you’re done exploring — save your project and open the Event Editor. Hope that it looks
familiar to you — at least a bit. If not — it would be best to get familiar with MMF2’s user manual
or the “Interface Guide” that I've written some time ago. It isn’t really necessary, since all of this

is pretty self-explanatory, but knowing what’s what always helps a bit.

Koobare’s MMF-to-paper coding system

Now, let me introduce you to my MMF2-to-paper event-recording system:

IF (Condition): [Object for the condition] > Condition group > Condition
THEN (Action): [Object for the action] > Action group > Action

Seems pretty simple, right? All the conditions are marked in red color, while actions are written
in blue. Object names are always put in [square brackets]. The final condition/action is always

in ltalic. If we’ll have a multi-condition event, then we’ll have:
IF (Condition 1): [Object for condition 1] > Condition group 1 > Condition 1
IF (Condition 2): [Object for condition 2] > Condition group 2 > Condition 2

THEN (Action): [Object for the action] > Action group > Action

Whereas a multi-action event looks like this:

IF (Condition): [Object for condition] > Condition group > Condition
THEN (Action 1): [Object for the action 1] > Action group 1 > Action 1
THEN (Action 2): [Object for the action 2] > Action group 2 > Action 2

If you’ll have to input anything by keyboard, it will be indicated by coloring the text green and

using < angle brackets >, like this:

< Set the Global Value A to 32 >

Additional comments, instructions and info will be put in << double angle brackets >>, using a

different color:

<< Select any wave sound from the MMF2’s sound library >>

Page 9/19

All you have to do is to go step-by-step through all the listed events and keep one eye on your
Event Editor, and the second one on this tutorial... Not much philosophy in any of this. And

since you already know what to do... Let’s start coding!

First things first

1) Firstly, let’s start with the traditional
“Start of frame” event, which will — as
soon as the frame starts — play some
nice background tune and make sure
that our player’s health meter (known
also as the health_counter object) is
set correctly. Actually, setting the

counters isn’t necessary if they already k@

have been set in the Frame Editor

(and both our counters have - their
initial and maximum values were set to 3, remember?), but I’'m always double-checking them,
since | usually have giant holes in my memory and keep forgetting about this kind of stuff.

Anyway, let’s get to it:

IF: [Storyboard Controls] > Start of frame

THEN: [health_counter] > Set Counter
<input: 3>

THEN: [Sound Object] > Music > Play music

<< Select any music from the MMF2’s midi library >>

And that’s that — our first event is ready. Wasn’t that easy? Sure it was. This whole game will be
based on pretty simple events — just try to imagine what can be achieved if you’d use more

advanced ones!

2) Time for the second event — this one will be based on the Always condition. This event will
make sure that the sub’s shadow (shadow object) will always have the same direction and X

position as the Submarine object.

IF: [Special Object] > Always
THEN: [shadow] > Position > Set X position
<input: X("Submarine") or click on the Retrieve data from an object button, select

the [Submarine], choose Position > X Coordinate from the right-click menu >

Page 10/19

THEN: [shadow] > Direction > Select direction
<input: Dir("Submarine”) or click on the Retrieve data from an object button,

select the [Submarine], choose Animation > Get direction value from the menu >

As you can see above, you can create Expression Editor’s data by either clicking the Retrieve
data from an object button or by typing in commands from your keyboard. If you’re a beginner —
| would suggest the “Retrieve data...”-button method, but the more time you’ll spend in MMF2’s
Event Editor, the more time-efficient the keyboard method will be. Try to write down all those
basic commands on a separate piece of paper and always remember that dir(“object_uno”) will
retrieve object_uno’s current direction value, while X(“object uno”) and Y(“object uno”) will

retrieve it's X and Y position.

3) And here’s our third event, determining what will happen if the player presses the space bar
on his keyboard - if it is pressed and the player still has some ammo left (current value of the
ammo_counter object is greater than 0), a new object (depth_charge) is created, a sound is

played and 1 is subtracted from the ammo_counter:

IF: [Keyboard & Mouse Object] > The Keyboard > Upon pressing a key

<< press SPACE on your keyboard >>
IF: [ammo_counter] > Compare the counter to a value

<< check if it’s greater than 0 >>
THEN: [Create New Objects] > Create Object

<< Select the [depth_charge] object >>

<< Set the coordinates to x=-1, y=-4 relatively to the [SubHunter3000] object >>
THEN: [Sound object] > Samples > Play sample

<< Select some kind of a “click” sound from the MMF2’s sound library >>
THEN: [ammo_counter] > Substract from Counter

<< input: 1>>

4) Remember what was said about player's ammo at the beginning of this tutorial? “The

number of depth charges will be limited, but rechargeable”. Let’s script this:

IF: [The Timer Object] > Every
<< Set the timer to 3 seconds >>

IF: [ammo_counter] > Compare the counter to a value
<< check if it’s lower than 3 >>

THEN: [ammo_counter] > Add to Counter

<< input: 1>>

Page 11/19

Four done, nineteen to go. If you wish, you can take a look at the screenshot below and
compare it with your Event Editor (note that it should look similar, but it doesn’t have to be

identical — you could have done a few things in a different sequence):

Allthe events ﬁ
23

Allthe objects ﬂl ﬂ, D| G mf"' ﬁ*-ﬁ"—-‘-— - & O » i wm|ees
1 | o Startof Frame \/ J

2 | & Alwvays q

e Every 03"-00 \/
4
* @am <=3

5) Time to play with the depth_charge object a little. This effect will control the graphical side of

e Upon pressing "Space bar"
*+ sss >0

our depth_charge object, and will also change it's movement to the vertical Path movement set
previously in the Frame Editor.

IF: [depth_charge] > Collisions > Another object > [high_water]
THEN: [depth_charge] > Movement > Multiple movements > Select movement
<< select “Movement #2” >>
THEN: [depth_charge] > Animation > Change > Animation Sequence
<< select “In Water” >>
THEN: [Create New Objects] > Create Object
<< Select the [splash] object >>
<< Set the coordinates to x=-1, y=9 relatively to the [depth_charge] object >>
THEN: [Sound object] > Samples > Play sample

<< Select some kind of a short “splash” sound from the MMF2’s sound library >>

6) Here’s another event related to the depth_charge object, this one determines what happens

if our depth charge hits the enemy:

IF: [depth_charge] > Collisions > Another object > [Submarine]
THEN: [depth_charge] > Animation > Change > Animation Sequence
<< select “Disappearing” >>
THEN: [Submarine] > Alterable Values > Subtract from
<< subtract 7 from Health >>
THEN: [Sound object] > Samples > Play sample

<< Select some kind of an explosion or hit sound from the MMF2’s sound library >>

7) Another “on collision” event for our player’s depth charge, this one is played out once there is

a collision between the depth_charge and a backdrop set to obstacle (like our sea bottom):

Page 12/19

IF: [depth_charge] > Collisions > Backdrop
THEN: [depth_charge] > Animation > Change > Animation Sequence

<< select “Disappearing” >>

THEN: [Sound object] > Samples > Play sample
<< Select some kind of an explosion or hit sound from the MMF2’s sound library >>

8) Yet another depth _charge event — this one simply destroys the given object when it’s

“Disappearing” animation is over.

IF: [depth_charge] > Animation > Has an animation finished?
<< select “Disappearing” >>
THEN: [depth_charge] > Destroy

9) OK, we’ve got all the events needed to deploy our depth charges and try to hit the enemy...

And here’s the enemy shooting back!

IF: [The Timer Object] > Every
<< Set the timer to 3.50 seconds >>
IF: [Submarine] > Alterable Values > Compare to one of the alterable values

<< check if Health is greater than 0 >>

Page 13/19

THEN: [Create New Objects] > Create Object

<< Select the [mine] object >>

<< Set the coordinates to x=3, y=-6 relatively to the [Submarine] object >>
THEN: [Sound object] > Samples > Play sample

<< Select some kind of a “click” sound from the MMF2’s sound library >>

10) Here’s a whole bunch of events controlling the collisions of the mine object and their

outcome (create them one by one):

a)
IF: [mine] > Collisions > Another object > [SubHunter3000]

THEN: [Create New Objects] > Create Object
<< Select the [boom] object >>
<< Set the coordinates to x=0, y=0 relatively to the [mine] object >>
THEN: [mine] > Destroy
THEN: [Sound object] > Samples > Play sample
<< Select some kind of an explosion or hit sound from the MMF2’s sound library >>
THEN: [health_counter] > Substract from Counter

<< input: 1>>

b)
IF: [mine] > Collisions > Another object > [depth_charge]

THEN: [depth_charge] > Destroy
THEN: [mine] > Destroy
THEN: [Create New Objects] > Create Object
<< Select the [boom] object >>
<< Set the coordinates to x=0, y=0 relatively to the [mine] object >>
THEN: [Sound object] > Samples > Play sample

<< Select some kind of an explosion or hit sound from the MMF2’s sound library >>

IF: [mine] > Collisions > Another object > [high water]

THEN: [mine] > Movement > Multiple movements > Select movement
<< select “Movement #2” >>

THEN: [Sound object] > Samples > Play sample

<< Select a quiet “splash” or “click” sound from the MMF2’s sound library >>

d)
IF: [mine] > Collisions > Another object > [boom]

THEN: [mine] > Destroy
THEN: [Sound object] > Samples > Play sample

<< Select some kind of an explosion or hit sound from the MMF2’s sound library >>

Page 14/19

11) These two events are pretty self-explanatory. Once the animation is over — destroy the

selected object. Create them — as usual — one after another.

a)

b)

IF: [boom] > Animation > Has an animation finished?
<< select “Stopped” >>
THEN: [boom] > Destroy

IF: [splash] > Animation > Has an animation finished?
<< select “Stopped” >>
THEN: [splash] > Destroy

12) Water mines should blow up after a few seconds — that’s what their Timer Alterable Value

was set up for. This whole thing is accomplished by these two events:

a)

b)

IF: [The Timer Object] > Every
<< Set the timer to 7 second >>
THEN: [mine] > Alterable Values > Subtract from

<< subtract 7 from Timer >>

IF: [mie] > Alterable Values > Compare to one of the alterable values

<< check if Timer is equal 0 >>
IF: [Special Object] > Limit conditions > Only one action when event loops
THEN: [mine] > Destroy
THEN: [Create New Objects] > Create Object

<< Select the [boom] object >>

<< Set the coordinates to x=0, y=0 relatively to the [mine] object >>
THEN: [Sound object] > Samples > Play sample

<< Select some kind of an explosion or hit sound from the MMF2’s sound library >>

13) Moving on to the next event... Ever wondered what happens to a submarine when it

receives a bit too many depth charges to endure? Yep, it blows up! Ay, lad, ‘tis that fancy brain

of yours workin’! But | tell ya’: it not only blows up, but it sinks too! Here, see for yourself:

a)

IF: [Submarine] > Alterable Values > Compare to one of the alterable values

<< check if Health is equal 0 >>

Page 15/19

b)

IF: [Special Object] > Limit conditions > Only one action when event loops
THEN: [Submarine] > Movement > Multiple movements > Select movement

<< select “Movement #2” >>
THEN: [Create New Objects] > Create Object

<< Select the [boom] object >>

<< Set the coordinates to x=46, y=0 relatively to the [Submarine] object >>
THEN: [Create New Objects] > Create Object

<< Select the [boom] object >>

<< Set the coordinates to x=-28, y=3 relatively to the [Submarine] object >>
THEN: [Create New Objects] > Create Object

<< Select the [boom] object >>

<< Set the coordinates to x=14, y=-8 relatively to the [Submarine] object >>
THEN: [Sound object] > Samples > Play sample

<< Select a big explosion sound from the MMF2’s sound library >>

IF: [Submarine] > Collisions > Another object > [shadow]
IF: [Special Object] > Limit conditions > Only one action when event loops
THEN: [Create New Objects] > Create Object

<< Select the [boom] object >>

<< Set the coordinates to x=38, y=6 relatively to the [Submarine] object >>
THEN: [Create New Objects] > Create Object

<< Select the [boom] object >>

<< Set the coordinates to x=-42, y=4 relatively to the [Submarine] object >>
THEN: [Create New Objects] > Create Object

<< Select the [boom] object >>

<< Set the coordinates to x=32, y=11 relatively to the [Submarine] object >>
THEN: [Submarine] > Destroy
THEN: [Sound object] > Samples > Play sample

<< Select a big explosion sound from the MMF2’s sound library >>
THEN: [Create New Objects] > Create Object

<< Select the [splash] object >>

<< Set the coordinates to x=-32, y=5 relatively to the [Submarine] object >>
THEN: [Create New Objects] > Create Object

<< Select the [splash] object >>

<< Set the coordinates to x=55, y=3 relatively to the [Submarine] object >>

IF: [Submarine] > Pick or count > Have all “Submarine” objects been destroyed

THEN: [Storyboard Controls] > Next frame

NAH NAH NAH NAH

| ...ON THE YELLOW
J'J: SUBMARINE...

NAH NAH NAH NAH D

14) Better save your project, since... We're almost at the end! Here you go — last three events

to code and you can play your very own Risky Waters game!

a)

IF: [health_counter] > Compare the counter to a value

<< check if it’s equal 0 >>
IF: [Special Object] > Limit conditions > Only one action when event loops
THEN: [Create New Objects] > Create Object

<< Select the [boom] object >>

<< Set the coordinates to x=-39, y=3 relatively to the [SubHunter3000] object >>
THEN: [Create New Objects] > Create Object

<< Select the [boom] object >>

<< Set the coordinates to x=27, y=-7 relatively to the [SubHunter3000] object >>
THEN: [Create New Objects] > Create Object

<< Select the [boom] object >>

<< Set the coordinates to x=-14, y=-18 relatively to the [SubHunter3000] object >>
THEN: [Create New Objects] > Create Object

<< Select the [boom] object >>

<< Set the coordinates to x=2, y=16 relatively to the [SubHunter3000] object >>
THEN: [SubHunter3000] > Destroy
THEN: [Sound object] > Samples > Play sample

<< Select a big explosion sound from the MMF2’s sound library >>

Page 17/19

b)

c)

And that’s all, folks! Yep, we're at the finish line! The End! Finito! Fin! Koniec! Now you have
your own Risky Waters game to play with, to enhance and extend! Save it to your hard drive,

build some new levels, add more enemies, change timers and counter values! And always

THEN: [Create New Objects] > Create Object

<< Select the [splash] object >>

<< Set the coordinates to x=-46, y=13 relatively to the [SubHunter3000] object >>
THEN: [Create New Objects] > Create Object

<< Select the [splash] object >>

<< Set the coordinates to x=14, y=11 relatively to the [SubHunter3000] object >>

IF: [SubHunter3000] > Pick or count > Have all “SubHunter3000” objects been destroyed
THEN: [Storyboard Controls] > Restart the current frame

IF: [SubHunter3000] > Position > Test position of “SubHunter3000”
<< Select “Leaves in the top?” — arrow leaving the frame at the top >>
<< Select “Leaves in the right?” — arrow leaving the frame to the right >>
<< Select “Leaves in the bottom?” — arrow leaving the frame at the bottom >>
<< Select “Leaves in the left?” — arrow leaving the frame to the left >>
THEN: [SubHunter3000] > Movement > Bounce

remember: practice makes perfect!

Thanks for your time and see you again soon!

Cheers!

marchewkowy@gmail.com

Sounds by the Freesound Project

If you have any questions, suggestions or just need help —

mail me at marchewkowy@gmail.com

Page 18/19

You have been reading...

RISKY
WATERS

a Multimedia Fusion 2 tutorial

BIOUGHT TO You BY

cuclneam S fUNKiesT

Created for Multimedia Fusion 2 & Multimedia Fusion 2: Developer

Always be sure to have your MMF2 up-to-date!

Page 19/19

