"gamebuilders” series

marchewkowy@gmail.com

Page 1/32

Welcome to yet another one of Koobare’s little tutorials, teaching you — as always — how

to effectively and efficiently use the best multimedia authoring tool ever — Multimedia Fusion 2

by Clickteam! This tutorial is meant for beginner intermediates, people who already know a
thing or two about MMF2, who have by now done their share of basic novice-level tutorials (you
should read the “Interface Guide”, “Glob Wars”, “Smelly Claw” and “Risky Waters” tutorials
before doing this one). Take a look at this simple lesson guide to help you decide which

tutorials should be played with first (note that this is just a suggestion):

MMF2 Interface: Interface Guide + Image Editor Guide First time with MMF2
Basics: Smelly Claw tutorial Beginners

Game tutorials: Glob Wars and/or Risky Waters Beginners

You are here — You’ve Got Spacemail! Beginner-intermediates
Next: Castle Defender and/or Space Corsair Beginner-intermediates
Next: Save & Load tutorial Intermediates

In this tutorial we will create a nice-looking “Lander” type of game, with a speeding spacedroid
trying to land on a roof of a tiny house, built on a distant and remote planet. We will use a few
counters, active objects, object groups and event-grouping techniques to achieve a great-
looking and good-playin’ game. During this tutorial we will create our own custom movement
(based on the “bouncing ball” movement), which you may improve further on by yourself and

use in your own “Lander’-inspired games.
Changes, changes, changes...

It's April of 2009... I've been writing tutorials for Clickteam | SMELLY CLAW
for some time now. I've received tons of e-mails, tons were
unfortunately lost by my malfunctioning incoming boxes
(dunno’ why, but it seems to still happen from time to time)...
A lot — and | mean A LOT - of your suggestions have been

implemented into my tuts, along with my own ideas and

modernizing efforts... We've traveled a long way from my first
tutorial, “Smelly Claw”, | guess we can all agree on that. Now ‘ R e e vt

it's time to introduce another one of your suggestions, that

have sprung up in your e-mails from time to time — I’'m going gméﬁ w’ Eof

Page 2/32

to get my tutorials better organized as a
structured course, as full-scale classes in
MMF2 game design for beginners and
intermediates. To do so, I'll divide all my
upcoming tutorials into four series, named
respectively “Gamebuilders”, “Enhancing
the Feel’, “Engine Works” and “Papa

Koobare’s Boot Camp”.

“Gamebuilders” will be a series of tutorials
in which the end-product will always be a
playable game of better-than-decent
quality, something that you can play after
completing, or even use as a basis for your
own project, as the core engine for your

own game.

My second tutorial series, “Enhancing the Feel”, will be a bit different from “Gamebuilders”.
You won't find the same “create a full game from scratch’-approach in these tutorials, as they
will focus on creating a few particular game elements that will be ready to easily implement into
your own games and applications. The main idea behind this series is to help you enhance the
gameplay experience of your players, to improve your game’s overall “feel”, by introducing
additional gizmos, such as special graphical effects, night and day systems, attractive layouts

for your menus and other extra elements that you can add to your own projects.

The third series, “Engine Works”, will be all about programming — how to create a basic enemy
A.l. with as little scripting as possible, how to use the Pathfinding object, how to encrypt your

savegames, how to create a simple save and load system using and array, that kind of stuff.

Finally, “Papa Koobare’s Boot Camp” will be all about the basic basics, stuff that can be really
interesting for first-timers, but would prove to be too “been there, done that’ for anyone who has
any experience with MMF2 whatsoever. This series will be designed specifically for all you

nuggets who just took their first few step into the fascinating world of Multimedia Fusion 2.
There will be even more changes coming in future tuts, but let's not be too hasty, we’ll learn

about them in proper time. As for now — let’s learn something about the Spacemail Postal

Service and why it’s the best way to send letters and parcels to distant galaxies...

Page 3/32

Spacemail — the postal service of the future!

We've all heard that before — the internet proved that the standard, old-fashioned postage
service isn’t needed anymore, right? Well... Wrong! In 2198 the project to build a spacecable
internet link-up between Earth and its fourteen colonies failed, when an inch-wide meteor
crushed into the 927,862,860,849,897 yard long wire, rendering it useless. Four years later the
wireless connection went out as well — as it seems, sunspot activity had some influence on the
broadcasted signal, turning all sent e-mails into ancient poetry and hamburger recipes (that —

for some reason — utilized broccoli and watermelons as the two main ingredients).

Finally, after years of serving dreadful hamburgers, someone had the courage to stand up and
ask: “so, why not do it in the traditional way?” In July of 2206, World President Bobby “Burger
Savior” Melikeyapples signed the executive order to create a new interspace agency, tasked
with delivering letters, packages, Christmas cards and tons of useless spam all across the
galaxy. Since that day onward, the Galaxy Postage Office’s mailbots rushed from one space
system to another, enabling Earthlings to communicate with aliens and vice versa. No matter
how many meteor fields they had to cross, no matter how many supernovas they had to evade
— the mailbots were always on track, there was always something that had to be delivered,
someone somewhere was always waiting for that tiny little card or envelope.

Page 4/32

Our story begins twenty years later, on the bizarre planet of Voopookoo. It is here, under the
ever-green sky, amongst the floating fuel-eating bubbles and strange giant balloons (chained to
the ground, for some reason), that we find Mailbot 7890-Kappa-91, also known as Raymond,
trying to deliver the last package in this rotation. He has limited fuel, his boost system is
somewhat frenzied — really in need of a good tune-up — and he still needs to land on the top of
that little pink cabin in the distance... The keyword here being “to land”, as opposed to (easier

achievable) “crash” — blasting through the roof on top speed just ain’t gonna’ do it for him.

Your assignment — as a mailbot operator
and a true friend of Raymond’s — is to
help number 7890-Kappa-91 land safely
and deliver his message. You're going to
use all your navigational skills to keep
those engines going without using up the
whole fuel tank, to make sure that
Raymond is ready for the touchdown...
And then to bring him down, once his
speed is below “9” on the display... The
tough part? The engineers that
constructed this off-location remote

control system have truly forgotten to put

any numbers on your screen — you’ll have
to trust your instincts and decide whether
the speed is low enough with the help of nothing but your hunch and a visual horizontal-bar
display... What's more, you better keep an eye on those odd bubbles floating in the air — it
seems that they have a tendency to evaporate fuel from Raymond’s reserves! Well, no one

said that the life of a mailbot operator is easy, right?

“You’ve got Spacemail!” — the basics...

Our game starts with a very short (few seconds in length, actually) “intro” of sorts — the mailbot
appears closer to the “camera”, just to show off a few details and demonstrate to the player
how he is built. During these few seconds the player has no control over the robot — it has to
travel up the screen, disappear from the player’s view, and then return in a smaller form (it will
actually be a different object, but — shush! — keep it for yourself), suggesting that it traveled a bit
further away. Once it returns on-screen, the mailbot controls are unblocked and the struggle

between the player, gravitational pull and the fuel-burning begins.

Page 5/32

The main goal of the game is to land the mailbot directly on top of the roof — to do so, the player
must keep the speed at *minimum* when approaching the landing zone and then press “space”
to initialize the landing sequence. Our gamers control the droid’s movement with the help of the
cursor keys, using up quite a lot of fuel with every press of the button — the longer they keep
those buttons pushed, the higher the mailbot goes... But the fuel reserves become emptier and
emptier as well. Furthermore, collisions with the floating “killer bubbles” take away lots of

spacegas too — the bigger the bubble, the more fuel it “steals” from the mailbot’s reserves.

The game is lost when the fuel reserves go down to zero (the mailbot will fall down to the
planet’'s surface), when the mailbot touches any of the chained static balloons (not to be
mistaken with the floating bubbles), or when he collides into the ground or one of the weird

bonespikes that grow right out of it — there are quite a lot of ways to loose here, as you can see.

So... You now have the basic knowledge about the game we’re going to create... Time to turn

the theory into practice... Let’s get our game going, shall we?

Page 6/32

El If you have any problems with this tutorial, or notice that there are some

mistakes present, please, contact me and I'll do my best to help you and

replace all the errors with correct information.

Contact me at: marchewkowy@gmail.com

[

Note: I’ve been receiving some reports that not all e-mails get to me for some

reason. Seems that some of them (quite a lot) end up in my spambox or are

blocked out by the server. | dunno why this is happening, so if you’re experiencing

any difficulties with delivering me a message or haven’t received a reply in quite some

time, please, send me another e-mail at marchewkowy@wp.pl, making sure that its

title begins with “To Koobare:”. I'll do my best to check both these e-mails regularly.

Part I: Setting up the application

Time to get to your mailbot, people are waiting for their Spacemail to be delivered! I'll start

off simple, by showing you how to establish the ground for our work — or, simply put, how to

create and set up our application. If you already know how to do this and/or are tired of such

a basic approach, just head to Part Il of this tutorial (a few pages down). This section is meant

for the rooks, people who are still more on the “beginner” level than the “beginner intermediate”.

Properties - You've got Spacemail

S = PC))

Window
Size 840 x 600
Border color | RGB = 255, 255, 255

Style...
[V Heading

Heading when maximized
Disable Close button

|

Mo Minimize box

Mo Maximize box

Mo Thick frame
Maximized on boot-up

Hidden at start
Menu...

RO

[v Menu bar [Edit

[v Menu displayed on boot-up
Window Menu Inde| 0
Options...

[Change Resolution Mode

No Item Selected
Select an item to see its description

Anyways, here we go... Open Multimedia Fusion 2,
create a new application and save it onto your hard drive
(it's always a good idea to have the Autobackup option of
MMF2 turned on — check your MMF2’s Preferences).
Rename it to “You’ve got Spacemail’. Now, go to your
application’s Properties window (if it didn't open up by
itself, right click on your application’s name in the
workspace toolbar and select Properties from the drop-
down menu), and select the Window tab (second from the
left). Set the window size to 840x600. If MMF2 asks you if
you'd like to modify the size of the existing frame as well,

select “Yes”. If it doesn’t ask you for itself, just open up the

Page 7/32

Storyboard Editor and manually change the size of the frame to 840x600. If you wish, you may
easily brand our game — return to the Properties window of your application (you may need to
click the name of your application in the Workspace toolbar), select the About tab (first from

the right), and change the “Description” field to “You’ve got Spacemail! — The Tutorial”.

Once you’re done with that, open up the Values tab (third one from the right, the one with the
“A-Z" symbol), which will enable us to edit the Global Values for our application. We actually
need just one GV: create it and name it “Delivered”, making sure that it's set to zero. This will
prove useful a bit later on. Got it? Great! That means that it's time for Part Il. Move on!

El Interested in one game type in particular? Would like to learn about something

that hasn’t been covered in any of the released tutorials yet? Got an idea that

could interest other tutorial-readers? Just drop me an e-mail!

Contact me at: marchewkowy@gmail.com

or write to the auxiliary address: marchewkowy@wp.pl

Page 8/32

Part Ill: Making your life a bit easier...

Since my third tutorial I've always been facing a dilemma while writing the part two of any tut
— traditionally the section in which we get hold of all the objects needed (not always, though,
sometimes this happens in part three or even four, depending on the layout of that particular
document). This ever-occurring dilemma goes like this: should | do everything — and | mean
EVERYTHING - step-by-step, in a “I'll take your hand and take you with me” kind of thing, or
not? Should | make sure that you — the readers, the users, people who | write for — take each
and every object on the list and create all of them by yourself, placing them into the right
positions, setting up all the preferences, fade-in effects, etc... Or should | rather not bore you to
death, since you had to do
this three times in the last ADVERTISEMENT absurd advertisement paid for by no one
two weeks already and you
sure as heck know every
little detail about placing a
new background or an active

object into the frame?

As these tutorials evolved

KOOBARE.

(by the way, have you making life e

noticed the huge graphical

progress that we’'ve made

since “Smelly Claw”?), so did my solutions to this ever-present dilemma. At first | decided to let
you just copy all the objects from a previously prepared application — just a simple copy 'n’
paste operation and we were home. Recently, I've came up with a more logical solution — after
the introduction and the optional “setting up the application” part we’re simply going to open up
that pre-prepped app and use it as the base for our project. This solution will now be applied in
all beginner-intermediate and intermediate level tutorials, whereas tuts for novices will be

treated with a “hands-on all the away” approach.

Since we’re now clear about this, let's not waste any more time on organizational issues...
There were quite a lot of them in this doc already, since I’'m reorganizing everything to match
your suggestions and my own modernizing concepts... But that’s it, | promise. To continue, just
close what you’ve done so far (if you actually didn’t just skip section | of this tut) and open up
the you’ve-got-spacemail-start.mfa file (should be in the same directory as this tutorial,

since they were packed together into the same archive). And then it's time for...

Page 9/32

Please note: most of the objects use alpha channels, a feature that is
unavailable in Games Factory 2 (TGF2 users should use basic library
objects or create their own graphics instead — | generally would advise you
to upgrade to MMF2 as soon as possible, since you’re missing out on some

really good stuff, a lot of quite impressive features).

Part lll: Knowing what’s what.

Once you've opened our basis app, open up the first and only frame (it should be entitled
“Spacemail”’) and take a look around. There’s a bunch of objects laying around, just waiting for

you to give them a purpose, to script them all together into a nice, good-playin’ game.

You should be looking at something like this right now:

Page 10/32

Notice the red-colored “detectors” that cover a big chunk of the background... Not looking
very well, are they? Not really blending in with the rest of the objects? Don’t be worried, they
won’t be seen in the game, as we will make them invisible. They are here to help us detect the

moment in which the mailbot crashes into one of the balloons or into the ground.

Now, choose one at random and check out the “Events” tab in its L e 5
properties window (it's the second tab from the right)... Notice T | @]Q
that they are all assigned to the “Traps” qualifier group, which e

will enable us to easily create events that control all five of them giﬂjﬁ:ﬁi _J i

at the same moment, with just a single line of code. This will
prove useful (saving us some time and making our code better

organized, cleaner) a bit later on, in the scripting part of this

tutorial.

Another thing to notice here: there are two mailbots present outside
the frame. The first one to the left is a bit bigger, with a simple path
movement set in its preferences — this is the “intro” mailbot. The
second one, more to the right and top corner of the screen, is the
actual mailbot that will be used during the gameplay — it has a

preconfigured “Bouncing Ball” movement, with the “initial direction”

pointing down (direction number 24). Of course, it won’t be behaving
like a bouncing ball once we’re done with it — this movement is just a

great basis for creating your own, custom ones.

Time to check out all those little details of all those little objects laying around the frame...
Below you can find an alphabetical list of all the objects, with their short description, their

purpose and some characteristic properties all written down... Enjoy:

Object’s name: So... What is it?

backdrop Just a simple backdrop object — the background for our game.

WHY IT’S HERE?

Well, we need some kind of a background, don’t we...? This is a picture
that I've put together for this tut, it shows the bizarre world of Voopookoo,
a distant planet colonized a few years ago by fearless pioneers from
Australian Outback (somehow they didn’t mind living amongst deserts and
sun-burned canyons full of snakes and giant spiders). One of these
pioneers awaits news about his family on Earth — it’s imperative that we
deliver him his messages as soon as possible!

Page 11/32

boost.counter

engine.smoke
and engine.smoke 2

explosion

fuel.counter

A horizontal bar counter, used to control our mailbot’s boost.

It is set as a horizontal bar counter, counting from left, with a vertical
gradient fill type (set to two different shades of green). Its Initial and
Minimum Values are both set to 0, its Maximum Value is set to 50.

Because we need some way of controlling our maildroid’s engine boost.

Well, it’s a pretty simple system, really... During the time that the “Up
Arrow” button is being pushed, “1” is added to this counter on every loop.
Furthermore, when that condition is met, the current value of this counter
is subtracted from the “fuel.counter” object’s value. When the “Up Arrow”
button is NOT being pressed,”1” is subtracted from the current value. If the
‘Down Arrow” button is being pressed, we subtract “3”.

Two active objects acting as smoke puffs from our mailbot’s engines,

Both “engine.smoke” objects have their fade-out transitions already set
for you — the first one is set to “Zoom” (at 0.56 of a second), the second
one is set to “Fade” (set to a tiny duration of 0.22 of a second).

Thanks to my usual smoke-related trick (create a “smokey” object with a
nice fade-out transition and destroy it imnmediately) we’ll have a nice visual
effect around our mailbot’s engines.

Active object used as our explosion blast.

The Ink Effect of this object has been set to Add. This will give us a nice
visual effect of a blindingly white explosion.

The fade-out transition of this object is set to “Zoom” (0.34 sec.).

‘Cause we needed an explosion — a visual effect that will appear when our
mailbot hits one of the balloons or falls onto the ground (in fact hitting one
of the red-colored “detectors” that we talked about a bit sooner).

A horizontal bar counter, used to control our mailbot’s fuel reserves.

It is set as a horizontal bar counter, counting from left, with a vertical
gradient fill type (set to two different shades of red). Its Initial and
Maximum Values are both set to 35000, its Minimum Value is set to 0.

Because this whole game is about fuel: if you use up too much, you won't
be able to land and you’ll crash miserably.

This will look a lot easier in the Event Editor than on paper (or on the
PDF’s pages, in fact), but here it goes: on every loop subtract “1” from
this counter, when the “Up Arrow” is pressed, subtract the value of the
“boost.counter” object, if the left or right arrow keys are pressed,
subtract “2”. If the mailbot object crashes into a small bubble, subtract
“800”. If it crashed into a medium-sized bubble — subtract “1000”. If it was
a big bubble — subtract “1500”.

killer.bubble.big A big, pink floating bubble that eats up our mailbot’s fuel reserves.

The fade-out and fade-in of this object are both set to “Zoom” (0.79 sec).

The movement is set to “Bouncing Ball”, with Speed set at “5”,
Deceleration at “0”, the “Moving at start” option being turned on.

Well, it’s pretty simple: once the mailbot crashes into this bubble, it breaks
apart with a “pop!” sound, eats up some fuel and then reappears in a
random position on the screen. Furthermore, from time to time a randomly
selected “killer.bubble.big” object suddenly changes its direction, without
any previous notice...

¥ ARE
AH, I'M STICKIN AROUND: KOOB
\I:KINDA' WEIRD, TALKIN' TO A BIG

FLOATIN' SKULL N’ EVERYTHIN' BUT
HE STILL PAYS ME, SO | TOTALLY
DON'T CARE HOW MLICH OF A CRAZY
ODDJOB HE REALLY IS.- OH, RIGHT.

| FORGOT WE CALL THESE PEOPLE
'"ECCENTRICS' NOWADAYS:-

killer.bubble.small Smaller versions of the “killer.bubble.big” object.

and

killer.bubble.medium

Well, they have exactly the same purpose as their bigger brother,
“killer.bubble.big” — they’re here to eat up the player’s fuel...

They’re basically the same as in the “Killer.bubble.big” object, the only
difference is that the “killer.bubble.small” has a shorter duration set for the
“Zoom” fade-out (0.56 of a second) and fade-in (0.67) transitions.

Page 13/32

landing.zone

randomizer

mailbot.game

mailbot.intro

sign.boost
and sign.fuel
and sign.speed

speed.counter

The landing zone for our mailbot (made invisible at the start of the frame).

A small active object that is used as the “landing zone” for our mailbot —
our droid will land only when it is in collision with this object (it also needs
to have the proper speed and the space bar must be pushed in the right
moment). It is placed on the pink spacecabin’s roof.

A small active object that changes it position at random on every loop.

This object helps us to randomize the location at which a new bubble is
created once it has ruptured during a collision with our mailbot. Its X
position is chosen randomly from the range of 0 to 830, whereas its Y
position is set to something from the area of 0 to 590.

QOur main protagonist — Mailbot 7890-Kappa-91, also known as Raymond.

The fade-out transition of this object is set to “Zoom” (1.58 sec.).

The movement is set to “Bouncing Ball”, with Speed set to “30”,
Deceleration at “0”, the “Moving at start” option being turned off,
whereas the Initial direction being set to 24 (down).

Well, this is the hero of our game — where else should he be? We control
Raymond with the help of the Arrow keys. To land him on the roof of the
spacecabin, just get him close enough (and that means really, really
close), slow down his fall and then press space.

The mailbot used in our short “intro”.

We've already learned everything there is to learn about this object. If you
require more information, just “reverse engineer” it, by checking out its
movement settings and animation frames.

Three little active objects that act as the background for our counters.

Well, to be honest, they're here just to make those counters look better...
Oh, and they have names on them too, so | guess that “informational
purposes” count as well.

A horizontal bar counter, used to display our mailbot’s speed.

It is set as a horizontal bar counter, counting from left, with a vertical
gradient fill type (set to orange and brown). Its Initial and Minimum
Values are both set to 0, its Maximum Value is set to 35.

Well, because we really need to give the player some tips on how fast his
mailbot is going...

This counter is less important for the overall game engine than the last two
were — but still, it’s crucial if we want Raymond'’s expedition to have a
happy ending. This counter is checked for its value during the landing —
and it is always set to have the same speed as the “mailbot.game” object.

trap.ground Five ‘“trap” objects — the red, invisible collision detectors.

and trap.balloon.1

and trap.balloon.2

and trap.balloon.3 All of these objects share a common qualifier — they all belong to the
and trap.balloon.4 group entitled “Traps”.

So that we know when does the collision between the mailbot and the
ground (or the chained balloons) take place.

Nothing fancy here: all the “traps” are hidden at the start of the frame, but
even when they are invisible, a collision with any of them will bring our
mailbot down, smashing it to pieces.

The invisible detectors

A nice thing to remember for the future, to use in your own projects, especially those with a
giant bitmap background: using invisible detectors instead of slicing your background into

separate objects can sometimes prove quite useful and save you a lot of time.

Part IV: Time for a bit of programming.

It's time for my favorite part! Save your project (always remember to save it from time to time,
that's a must!) and open the Event Editor. If you're new to my tutorials, let me introduce you
to the event-recording system that | use. If you know it already — just skip this frame below and

quickly move on to the coding part:

Koobare’s MMF-to-paper coding system

IF (Condition): [Object for the condition] > Condition group > Condition
THEN (Action): [Object for the action] > Action group > Action

Page 15/32

Seems simple, right? Well, that’s just because IT IS simple. All the conditions are

marked in red, while actions are written in fancy blue.

Object names are always put in [square brackets]. The final condition/action is

always in [talic. If we’ll have a multi-condition event, then it'll be like this:

IF (Condition 1): [Object for condition 1] > Condition group 1 > Condition 1
IF (Condition 2): [Object for condition 2] > Condition group 2 > Condition 2
THEN (Action): [Object for the action] > Action group > Action

Whereas a multi-action event looks like this:
IF (Condition): [Object for condition] > Condition group > Condition
THEN (Action 1): [Object for the action 1] > Action group 1 > Action 1

THEN (Action 2): [Object for the action 2] > Action group 2 > Action 2

If you’ll have to input anything by keyboard, it will be indicated by coloring the text

green and using < angle brackets >, like this (this marking will be soon obsolete):

< Set the Global Value A to 32 >

Additional comments, instructions and info will be put in << double angle

brackets >>, using a different color (this marking will soon be also used for input):

<< Select any wave sound from the MMF2’s sound library >>

From time to time I'll also use this style to throw in some extra tips and tricks
about MMF2 and more advanced coding techniques. All you have to do is to go
step-by-step through all the listed events and keep one eye on your Event Editor,

and the second one on this tutorial...

Let’s deliver some Spacemail, already!

1) Firstly, let’s start off with the conventional “Start of frame” event, which | usually create at

the very beginning of the events list. This event — triggered when someone starts our game —

Page 16/32

will make quite a lot of objects invisible (all the traps, all the counters, all the “sign” objects, the
landing zone and the randomizer — the “signs” and counters will be returned to their visible
status once our little “intro” has ended) and, in addition, will play two sample files (search for
the “Warm up.wav” sound on your MMF2 Bonus Materials disc, whereas the “flyjet-cut.wav”

file is supplied in the same archive as this tutorial):

IF: [Storyboard Controls] > Start of frame

THEN: [Group.Traps] > Visibility > Make invisible

THEN: [randomizer] > Visibility > Make invisible

THEN: [landing.zone] > Visibility > Make invisible

THEN: [speed.counter] > Visibility > Make invisible
THEN: [fuel.counter] > Visibility > Make invisible

THEN: [boost.counter] > Visibility > Make invisible
THEN: [sign.fuel] > Visibility > Make invisible

THEN: [sign.speed] > Visibility > Make invisible

THEN: [sign.boost] > Visibility > Make invisible

THEN: [Sound Object] > Samples > Play and loop sample
<< Choose the “Warm Up.wav” sound, loop it 0 times, which means infinitely >>
THEN: [Sound Object] > Samples > Play and loop sample

<< Choose the “flyjet-cut.wav” sound, loop it 0 times, which means infinitely >>

And with just a bit of MMF2 magic — we’ve got our first event up and ready! Ain’t it great?

Now, before we march onto the next event, let’'s set up all the Event Groups that we’'ll need in
our event list... Firstly, create three groups beneath the first event and call them “Intro”,
“Spacemail” and “Landed” respectively. Make sure that both “Intro” and “Landed” have the
“Active when frame starts” option turned ON, whereas “Spacemail” should have this option
turned OFF. Once that’s done, open up the “Spacemail” group and create two more subgroups
inside of it: “Engines” and “Killer Bubbles” (both should be set active when frame starts). And
just when you thought we were done with all of this grouping... let’'s create another subgroup!
Create it inside the “Engines” group and name it “Engine Smoke” (once again — let it be active

when frame starts)... Got it? Great! We can now finally move on to some more scripting!

2) Time for our event numero duo! This one ends our “intro” stage (which will last for a whole 5
seconds, folks) enabling all those “sign” objects and counters to reappear once again... This
little thingie will also destroy the “mailbot.intro” object, play around with group activation and

start off two sound samples... Just follow my lead, and we’ll be there in no time:

Page 17/32

IF: [The Timer Object] > Is the timer equal to a certain value?
<< Set the timer to 5 seconds >>

THEN: [mailbot.intro] > Destroy

THEN: [Special Object] > Group of events > Activate

<< Select the Spacemail group >>

THEN: [speed.counter] > Visibility > Make object reappear
THEN: [fuel.counter] > Visibility > Make object reappear
THEN: [boost.counter] > Visibility > Make object reappear
THEN: [sign.fuel] > Visibility > Make object reappear
THEN: [sign.speed] > Visibility > Make object reappear
THEN: [sign.boost] > Visibility > Make object reappear
THEN: [Sound Object] > Samples > Play sample

<< Choose the “PULSE07.wav” sound >>

THEN: [Sound Object] > Samples > Stop a specific sample
<< Choose the “flyjet-cut.wav” sound >>

THEN: [Special Object] > Group of events > Deactivate

<< Select the Intro group >>

Got it? Well then, good for you! Drag and drop this event to the second position in the events

list (just for neatness’ sake), just above the “Intro” group...

Page 18/32

3) Now its time to work on that little 5-second-long “intro” of ours... Create all these events

inside the “Intro” event group, one after another:

IF: [The Timer Object] > Every

<< Set the timer to 0.77 of a second >>

THEN: [Create New Objects] > Create Object

<< Select the [engine.smoke 2] object >>

<< Set the coordinates to x=-38, y=75, relative to [mailbot.intro] object >>
THEN: [Create New Objects] > Create Object

<< Select the [engine.smoke 2] object >>

<< Set the coordinates to x=38, y=76, relative to [mailbot.intro] object >>
THEN: [Create New Objects] > Create Object

<< Select the [engine.smoke 2] object >>

<< Set the coordinates to x=44, y=58, relative to [mailbot.intro] object >>
THEN: [Create New Objects] > Create Object

<< Select the [engine.smoke 2] object >>

<< Set the coordinates to x=-47, y=59, relative to [mailbot.intro] object >>

Aaaand here’s the second one, remember to put these in the “Intro” group:

IF: [The Timer Object] > Every

<< Set the timer to 0.27 of a second >>

THEN: [Create New Objects] > Create Object

<< Select the [engine.smoke 2] object >>

<< Set the coordinates to x=-48, y=74, relative to [mailbot.intro] object >>
THEN: [Create New Objects] > Create Object

<< Select the [engine.smoke 2] object >>

<< Set the coordinates to x=43, y=71, relative to [mailbot.intro] object >>
THEN: [Create New Objects] > Create Object

<< Select the [engine.smoke 2] object >>

<< Set the coordinates to x=30, y=59, relative to [mailbot.intro] object >>
THEN: [Create New Objects] > Create Object

<< Select the [engine.smoke 2] object >>

<< Set the coordinates to x=-31, y=51, relative to [mailbot.intro] object >>

s BELO FEAAG®S |11 1 —2000X——— ——
1 | e StartofFrame (¥4 4 ARV ALYALVARV ARV ALV ALY
2 [+ Tier equals 05700 |\ 4 ALY ARYA VIV
3 | Intro
¢ [» Eeryorn I r r~Aarrrrr1rrrrrrrrrrrrrrrT
5 v Everyonat T T TN T TTTTITTTTITTT T T I T T T T T [

Page 19/32

Same drill, same group, almost identical event...

IF: [The Timer Object] > Every

<< Set the timer to 0.25 of a second >>

THEN: [Create New Objects] > Create Object

<< Select the [engine.smoke 2] object >>

<< Set the coordinates to x=-38, y=67, relative to [mailbot.intro] object >>
THEN: [Create New Objects] > Create Object

<< Select the [engine.smoke 2] object >>

<< Set the coordinates to x=38, y=64, relative to [mailbot.intro] object >>

Here’s something a bit different — two last events that go into the “Intro” event group...
IF: [Special Object] > Always
THEN: [engine.smoke 2] > Animation > Change > Animation Sequence

<< select “Smoke” >>

IF: [engine.smoke 2] > Movement > Is stopped?

THEN: [engine.smoke 2] > Destroy

And that concludes our efforts when it comes to the “Intro” group... You can take a look at this

visual aid to see how it looks in my Event Editor...

e BELO FEARG@e | 1 1 4 - NO00X——— ———
1 |« StarofFrame ~ i VIV NV VIV VNN
2 | e Timerequak 0500 | < ViV VIV
3 | Intro

4 | & Every 0017 \/

5 | e Everyoo-2t v

& | o Every00n25 v

7 | & Always \!

8 | v {Q)isstopped \/

9 | » New condition

4) Let’s continue... Open up the “Spacemail” group (have you remembered to make this group

inactive when frame starts?) and create this little event:

IF: [Special Object] > Group of events > On group activation
THEN: [mailbot.game] > Movement > Start

This little thingie ensures that our mailbot (the game one, not the intro one) will be moving once

the actual game starts (when the timer hits 5 seconds and activates the “Spacemail” group).

Page 20/32

5) Step five: another event that goes right into the “Spacemail” group... Notice that the value of
the “speed.counter” object is always exact as the speed of the “mailbot.game” one. You can

also observe how the “randomizer” is forced to jump to a random position on every loop:

IF: [Special Object] > Always

THEN: [fuel.counter] > Subtract from Counter
<<input: 1>>

THEN: [speed.counter] > Set Counter

<<input: Speed("mailbot.game") >>

THEN: [randomizer] > Position > Set X position
<<input: Random(830) >>

THEN: [randomizer] > Position > Set Y position
<< input: Random(590) >>

THEN: [engine.smoke] > Destroy

6) Yet another simple thingie that goes into the “Spacemail” event directory...

IF: [mailbot.game] > Position > Test position

<< Select “Leaves in the top?” — arrow leaving the frame at the top >>

<< Select “Leaves in the right?” — arrow leaving the frame to the right >>

<< Select “Leaves in the bottom?” — arrow leaving the frame at the bottom >>
<< Select “Leaves in the left?” — arrow leaving the frame to the left >>

THEN: [mailbot.game] > Movement > Bounce

7) Let's see what happens when our mailbot crashes into one of the collision detectors...

IF: [mailbot.game] > Collisions > Another object > [Group.Traps]
THEN: [Create New Objects] > Create Object

<< Select the [explosion] object >>

<< Set the coordinates to x=1, y=12, relative to [mailbot.game] object >>
THEN: [Sound Object] > Samples > Play sample

<< Choose the “EXPLODO03.wav” sound >>

THEN: [Sound Object] > Samples > Play sample

<< Choose the “CLATTER2.wav” sound >>

THEN: [mailbot.game] > Destroy

THEN: [Sound Object] > Samples > Stop a specific sample

<< Choose the “flyjet-cut.wav” sound >>

THEN: [Sound Object] > Samples > Stop a specific sample

<< Choose the “KNOCK.wav” sound >>

Page 21/32

8) We're still in the “Spacemail” group, remember that — every event from step 4 up until now

(and up until step 11) goes into that set... Here’s a simple event for ya’:

IF: [explosion] > Animation > Has an animation finished?
<< select “Stopped” >>

THEN: [explosion] > Destroy

THEN: [Sound Object] > Samples > Play sample

<< Choose the “Bash 2.wav” sound >>

9) Here’s what happens when our mailbot has been destroyed...

IF: [mailbot.game] > Pick or count > Have all been destroyed?

THEN: [Storyboard Controls] > Restart the current frame

10) Here’s a bit longer event, that is commenced once the mailbot’s fuel reserves are down to

zero... Basically this makes our mailbot fall from the skies...

IF: [fuel.counter] > Compare the counter to a value

<< compare whether it is Lower or Equal 0 >>

THEN: [Special Object] > Group of events > Deactivate

<< Select the Engines group >>

THEN: [mailbot.game] > Direction > Select direction

<< Select direction 24 (down) >>

THEN: [speed.counter] > Visibility > Make invisible

THEN: [fuel.counter] > Visibility > Make invisible

THEN: [boost.counter] > Visibility > Make invisible

THEN: [sign.fuel] > Visibility > Make invisible

THEN: [sign.speed] > Visibility > Make invisible

THEN: [sign.boost] > Visibility > Make invisible

THEN: [mailbot.game] > Animation > Change > Animation Sequence
<< Select “Falling” >>

THEN: [mailbot.game] > Movement > Set Speed...

<< Type this in: 50 >>

THEN: [Sound Object] > Samples > Stop a specific sample

<< Choose the “flyjet-cut.wav” sound >>

11) And here’s the last event that's going to go directly into the “Spacemail” event group... This

one is just a supplement to the previous one.

Page 22/32

IF: [fuel.counter] > Compare the counter to a value

<< compare whether it is Lower or Equal 0 >>

IF: [Special Object] > Limit conditions > Run this event once

THEN: [Sound Object] > Samples > Play and loop sample

<< Choose the “KNOCK.wav” sound, loop it 0 times, which means infinitely >>
THEN: [Sound Object] > Samples > Play sample

<< Choose the “Impact fx 1.wav” sound >>

You can once again compare your progress with mine, helps to this little visual aid:

Spacemail
11 = On group activation v
12 | o Aways ~ [V ViV
13 . ﬂ lsaves the play arca
Coliision mwwnﬂandﬂ
g animation Stapped is avar
Last ﬂ has been destroyed
17 . j“ 0 \/

. j¢o

3

LS

=
.

@
.

&
.

e L LSS
<
<
<
<
<
<
<

+

Run this event once

19 Engines

Once you’re done comparing, let’s get back to business...

Page 23/32

12) Now it’s time to open up that “Engines” event group. Create all these events inside this set

— they are all responsible for steering, for controlling the mailbot on runtime:

IF: [boost.counter] > Compare the counter to a value
<< compare whether it is Greater or equal 30 >>
THEN: [mailbot.game] > Direction > Select direction
<< Select direction 8 (up) >>

THEN: [mailbot.game] > Movement > Set Speed...

<<input: 0-(30-value("boost.counter")) >>

IF: [boost.counter] > Compare the counter to a value
<< compare whether it is Lower than 30 >>

THEN: [mailbot.game] > Direction > Select direction
<< Select direction 24 (down) >>

THEN: [mailbot.game] > Movement > Set Speed...

<<input: 35-value("boost.counter”) >>

IF: [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed
<< press UP ARROW on your keyboard >>

THEN: [boost.counter] > Add to Counter

<<input: 1>>

THEN: [fuel.counter] > Subtract from Counter

<<input: value("boost.counter”) >>

Here’s an event with a negated condition. To negate a condition just right-click on it and choose

“negate” from the drop-down menu:

[NEGATE] IF: [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed
<< press UP ARROW on your keyboard >>
THEN: [boost.counter] > Subtract from Counter

<< input: 1>>

IF: [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed
<< press DOWN ARROW on your keyboard >>
THEN: [boost.counter] > Subtract from Counter

<<input: 3>>

Now it's the time for a series of events that will help us to control the sideways movement of

Mailbot 7890-Kappa-91 (which can prove pretty useful when navigating, don’t you think?):

Page 24/32

IF: [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed
<< press LEFT ARROW on your keyboard >>

IF: [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed
<< press UP ARROW on your keyboard >>

THEN: [mailbot.game] > Direction > Select direction

<< Select direction 12 (top-left) >>

THEN: [fuel.counter] > Subtract from Counter

<<input: 2 >>

IF: [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed
<< press RIGHT ARROW on your keyboard >>

IF: [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed
<< press UP ARROW on your keyboard >>

THEN: [mailbot.game] > Direction > Select direction

<< Select direction 4 (top-right) >>

THEN: [fuel.counter] > Subtract from Counter

<<input: 2>>

IF: [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed

<< press LEFT ARROW on your keyboard >>

[NEGATE] IF: [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed
<< press UP ARROW on your keyboard >>

THEN: [mailbot.game] > Direction > Select direction

<< Select direction 22 (down-left) >>

THEN: [fuel.counter] > Subtract from Counter

<< input: 2 >>

IF: [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed

<< press RIGHT ARROW on your keyboard >>

[NEGATE] IF: [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed
<< press UP ARROW on your keyboard >>

THEN: [mailbot.game] > Direction > Select direction

<< Select direction 26 (down-right) >>

THEN: [fuel.counter] > Subtract from Counter

<< input: 2 >>
Thanks to these little four events our mailbot will be able to maneuver around those crazy

chained balloons and deadly fuel-eating bubbles... Good work! Don’t get too relaxed, though,

there’s still a lot to do... These two events will control the sound of the mailbot’s engine:

Page 25/32

IF: [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed
<< press UP ARROW on your keyboard >>

IF: [Special Object]>> Limit conditions>> Only one action when event loops
IF: [fuel.counter] > Compare the counter to a value

<< compare whether it is Greater than 1 >>

THEN: [Sound Object] > Samples > Play and loop sample

<< Choose the “flyjet-cut.wav” sound, loop it 0 times, which means infinitely >>

[NEGATE] IF: [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed
<< press UP ARROW on your keyboard >>

IF: [Special Object]>> Limit conditions>> Only one action when event loops

THEN: [Sound Object] > Samples > Stop a specific sample

<< Choose the “flyjet-cut.wav” sound >>

13) And that’s all when it comes to the “Engines” group... Let’'s move on to the next event set —
the “Engine smoke” one. Open it up and create these two events inside (both are responsible

for creating our cool smoke-like visual effect):

IF: [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed
<< press UP ARROW on your keyboard >>

IF: [The Timer Object]>> Every

<< Set the timer to 0.74 of a second >>

IF: [fuel.counter] > Compare the counter to a value

<< compare whether it is Greater than 1 >>

THEN: [Create New Objects] > Create Object

<< Select the [engine.smoke] object >>

<< Set the coordinates to x=-15, y=29, relative to [mailbot.game] object >>
THEN: [Create New Objects] > Create Object

<< Select the [engine.smoke] object >>

<< Set the coordinates to x=17, y=31, relative to [mailbot.game] object >>

IF: [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed
<< press UP ARROW on your keyboard >>

IF: [The Timer Object]>> Every

<< Set the timer to 0.34 of a second >>

IF: [fuel.counter] > Compare the counter to a value

<< compare whether it is Greater than 1 >>

THEN: [Create New Objects] > Create Object

<< Select the [engine.smoke] object >>

<< Set the coordinates to x=-19, y=34, relative to [mailbot.game] object >>

Page 26/32

THEN: [Create New Objects] > Create Object
<< Select the [engine.smoke] object >>

<< Set the coordinates to x=19, y=34, relative to [mailbot.game] object >>

Just a little visual aid if you’d like some comparison...

a0 | * X Repeatwhie "Up Arrow”is pressed
+ Only one action when event loops

31| Engine smoke

= Repeat while “Up Arrow” is pressed
93 | * Every 0014 \/

. —i=1

Repeat while "Up Arrow” is pressed

33 | ¢ Every 00734 \/
» —iz1

14) We’re abandoning the “Engine smoke” group, moving up to the “Killer Bubbles” one. As
the name suggests, this one is all about those weird bubbles floating on the screen. Create all

the events below inside this group:

IF: [mailbot.game] >> Collisions >> Another object >> [killer.bubble.big]
THEN: [killer.bubble.big] >> Destroy

THEN: [Create New Objects] > Create Object

<< Select the [killer.bubble.big] object >>

<< Set the coordinates to x=0, y=0, relative to [randomizer] object >>
THEN: [fuel.counter] > Subtract from Counter

<< input: 1500 >>

THEN: [Sound Object] > Samples > Play sample

<< Choose the “POP1.wav” sound >>

IF: [mailbot.game] >> Collisions >> Another object >> [killer.bubble.medium]
THEN: [killer.bubble.medium] >> Destroy

THEN: [Create New Objects] > Create Object

<< Select the [killer.bubble.medium] object >>

<< Set the coordinates to x=0, y=0, relative to [randomizer] object >>

THEN: [fuel.counter] > Subtract from Counter

<< input: 1000 >>

THEN: [Sound Object] > Samples > Play sample

<< Choose the “POP1.wav” sound >>

% Killer Bubbles

37 |« Colision between iy and () \/ \/ \/
36 | # Colision betwsen ﬁ and . \/ \/

Page 27/32

IF: [mailbot.game] >> Collisions >> Another object >> [killer.bubble.small]
THEN: [killer.bubble.small] >> Destroy

THEN: [Create New Objects] > Create Object

<< Select the [killer.bubble.small] object >>

<< Set the coordinates to x=0, y=0, relative to [randomizer] object >>
THEN: [fuel.counter] > Subtract from Counter

<< input: 800 >>

THEN: [Sound Object] > Samples > Play sample

<< Choose the “POP1.wav” sound >>

SPENGERETHEISISEIELE
BANC

MY LUNCLE BOB ALWAYS HAD ONE O.F THOSE
"NOT-REALLY-ATTRACT IVE' FACES, Y KNO\:.E
FUNNY PART OF THE STORY WAS THAT

ACTUALLY POSED F_I%RFLTE(?:E ?gt'éEY i s

IRA £
i;:tgg ll-lsuf |k'ft.:i:u:t.e 80OB, WHY THE HELL DID E:E_
vouU DO THAT, DIDN'T YOU KNOW THAT fnd
PIRATES ARE LAME?". HE MADE THAT e
STUPID FACE OF HIS AND TOLD ME THA'I'W e
ACTUALLY IT WAS NINJAS THAT MADE H

If any of the killer bubbles leaves the play area (they’re floating randomly in all directions, so

that’s gonna’ happen a lot), they are wrapped around it (appear from the other side):

IF: [killer.bubble.big] >> Position >> Test position

<< Select “Leaves in the top?” — arrow leaving the frame at the top >>

<< Select “Leaves in the right?” — arrow leaving the frame to the right >>

<< Select “Leaves in the bottom?” — arrow leaving the frame at the bottom >>
<< Select “Leaves in the left?” — arrow leaving the frame to the left >>

THEN: [killer.bubble.big] >> Movement >> Wrap around play area

IF: [killer.bubble.medium] >> Position >> Test position

<< Select “Leaves in the top?” — arrow leaving the frame at the top >>

<< Select “Leaves in the right?” — arrow leaving the frame to the right >>

<< Select “Leaves in the bottom?” — arrow leaving the frame at the bottom >>
<< Select “Leaves in the left?” — arrow leaving the frame to the left >>

THEN: [killer.bubble.medium] >> Movement >> Wrap around play area

Page 28/32

IF: [killer.bubble.small] >> Position >> Test position

<< Select “Leaves in the top?” — arrow leaving the frame at the top >>

<< Select “Leaves in the right?” — arrow leaving the frame to the right >>

<< Select “Leaves in the bottom?” — arrow leaving the frame at the bottom >>
<< Select “Leaves in the left?” — arrow leaving the frame to the left >>

THEN: [killer.bubble.small] >> Movement >> Wrap around play area

From time to time one of the bubbles — chosen at random — suddenly bounces...

IF: [The Timer Object]>> Every

<< Set the timer to 71.00 second >>

IF: [killer.bubble.big] >> Pick or count >> Pick one at random
IF: [Special Object] >> X chances out of Y random

<< Input value: 1 >>

<< Input value: 7 >>

THEN: [killer.bubble.big] >> Movement >> Bounce

IF: [The Timer Object]>> Every

<< Set the timer to 1.00 second >>

IF: [killer.bubble.medium] >> Pick or count >> Pick one at random
IF: [Special Object] >> X chances out of Y random

<< Input value: 1 >>

<< Input value: 8 >>

THEN: [killer.bubble.medium] >> Movement >> Bounce

IF: [The Timer Object]>> Every

<< Set the timer to 1.00 second >>

IF: [killer.bubble.small] >> Pick or count >> Pick one at random
IF: [Special Object] >> X chances out of Y random

<< Input value: 1 >>

<< Input value: 12 >>

THEN: [killer.bubble.small] >> Movement >> Bounce

Got it? Great! That means that we are just two events from finally completing this tutorial!
Woah, this was a big one, wasn'’t it? Anyway, we’ll chit-chat a bit later — it's time to get to the

finish line, to get all of this up and running!
14) Leave the “Killer Bubbles” group and go to the next one — the one entitled “Landed”. These
two events control what happens when the player actually manages to get our mailbot close

enough to the spacecabin and to press space bar on time:

Page 29/32

IF: [Keyboard & Mouse Object] >> The Keyboard >> Upon pressing a key
<< press SPACE BAR on your keyboard >>

IF: [mailbot.game] >> Collisions >> Another object >> [landing.zone]

IF: [speed.counter] > Compare the counter to a value

<< compare whether it is Lower or Equal 9 >>

IF: [fuel.counter] > Compare the counter to a value

<< compare whether it is Greater than 0 >>

THEN: [mailbot.game] >> Movement >> Stop

THEN: [Special Object] >> Group of events>> Deactivate

<< Select the Spacemail group >>

THEN: [mailbot.game] >> Animation >> Change >> Animation Sequence
<< select “Delivered” >>

THEN: [Special Object] >> Change a global value>> Set

<< Choose value Delivered >>

<<input: 1>>

THEN: [Sound Object] > Samples > Play sample

<< Choose the “GAS04.wav” sound >>

THEN: [Sound Object] > Samples > Play sample

<< Choose the “Wopapop.wav” sound >>

THEN: [Sound Object] > Samples > Stop a specific sample

<< Choose the “flyjet-cut.wav” sound >>

And here’s the last event that are gonna’ create today!

IF: [Keyboard & Mouse Object] >> The Keyboard >> Upon pressing a key
<< press ENTER on your keyboard >>

IF: [Special Object] >> Compare to a global value

<< Choose value Delivered >>

<< compare if it is Equal 1 >>

THEN: [Storyboard Controls] >> Next frame

42 Landed

+
50

*
-

Upon preseing "Space bar”

Coliision between m-and —
= ViV Vv

— =0

5 "
B

Upon pressing "Enter”
Delivered = 1

Aaaaand... That’s it! Congratulations!

Page 30/32

This was a pretty long tutorial, but we finally made it! Hope that you’ll find out that the game we
have produced together was worth all this amount of work and time. Mailbot 7890-Kappa-91
finally has his shot at delivering the messages to the settlers of Voopookoo, and you — finally —
have a chance to show that you're the best mailbot operator in the whole Galaxy Postage

Office! Go out there and make us proud!

Thanks for your time and see you again soon!

Cheers!

If you have any questions, suggestions or just need help —

mail me at marchewkowy@gmail.com

To all you pirate-lovers out there: don’t get offended by my anti-pirate jokes, they are just jokes
after all! Having said that... | truly, truly think that a ninja warrior could wipe the floor with a

pirate, anytime, any day! ;) And no, | won’t walk the plank, thanks for your proposal. ;)

All copyrighted materials, names, titles, images and visualizations (as “Battlestar Galactica”, the
xenomorph from “Alien”, “The Hulk” etc.) belong to their respective owners and are used here

exclusively as a parody or a satirist fan tribute — no copyright infringement intended.

Page 31/32

“enhancing the feel” series

You have been reading...

Created for Multimedia Fusion 2 & Multimedia Fusion 2: Developer

Always be sure to have your MMF2 up-to-date!

Page 32/32

