
Page 1/32 

 
 
 

 
 
 

 
 

 
 

 
 
 

You may not use this tutorial for any other purpose than learning, working or 

having fun... In other words: You can use this PDF tutorial for anything you’d like, 

as long as it doesn’t involve both a hammer and a squirrel.  

 

 
 

marchewkowy@gmail.com 



Page 2/32 

Welcome,  MMF2 acolytes!  

 

Welcome to yet another one of Koobare’s little tutorials, teaching you – as always – how 

to effectively and efficiently use the best multimedia authoring tool ever – Multimedia Fusion 2 

by Clickteam! This tutorial is meant for beginner intermediates, people who already know a 

thing or two about MMF2, who have by now done their share of basic novice-level tutorials (you 

should read the “Interface Guide”, “Glob Wars”, “Smelly Claw” and “Risky Waters” tutorials 

before doing this one). Take a look at this simple lesson guide to help you decide which 

tutorials should be played with first (note that this is just a suggestion): 

 

MMF2 Interface: Interface Guide + Image Editor Guide  First time with MMF2 

Basics: Smelly Claw tutorial  Beginners 

Game tutorials: Glob Wars and/or Risky Waters  Beginners 

You are here → You’ve Got Spacemail!  Beginner-intermediates 

Next: Castle Defender and/or Space Corsair  Beginner-intermediates 

Next: Save & Load tutorial  Intermediates 

 

In this tutorial we will create a nice-looking “Lander” type of game, with a speeding spacedroid 

trying to land on a roof of a tiny house, built on a distant and remote planet. We will use a few 

counters, active objects, object groups and event-grouping techniques to achieve a great-

looking and good-playin’ game. During this tutorial we will create our own custom movement 

(based on the “bouncing ball” movement), which you may improve further on by yourself and 

use in your own “Lander”-inspired games.  

 

Changes, changes, changes…  

 

It’s April of 2009… I’ve been writing tutorials for Clickteam 

for some time now. I’ve received tons of e-mails, tons were 

unfortunately lost by my malfunctioning incoming boxes 

(dunno’ why, but it seems to still happen from time to time)… 

A lot – and I mean A LOT – of your suggestions have been 

implemented into my tuts, along with my own ideas and 

modernizing efforts… We’ve traveled a long way from my first 

tutorial, “Smelly Claw”, I guess we can all agree on that. Now 

it’s time to introduce another one of your suggestions, that 

have sprung up in your e-mails from time to time – I’m going 



Page 3/32 

to get my tutorials better organized as a 

structured course, as full-scale classes in 

MMF2 game design for beginners and 

intermediates. To do so, I’ll divide all my 

upcoming tutorials into four series, named 

respectively “Gamebuilders”, “Enhancing 

the Feel”, “Engine Works” and “Papa 

Koobare’s Boot Camp”.  

 

“Gamebuilders” will be a series of tutorials 

in which the end-product will always be a 

playable game of better-than-decent 

quality, something that you can play after 

completing, or even use as a basis for your 

own project, as the core engine for your 

own game.  

 

My second tutorial series, “Enhancing the Feel”, will be a bit different from “Gamebuilders”. 

You won’t find the same “create a full game from scratch”-approach in these tutorials, as they 

will focus on creating a few particular game elements that will be ready to easily implement into 

your own games and applications. The main idea behind this series is to help you enhance the 

gameplay experience of your players, to improve your game’s overall “feel”, by introducing 

additional gizmos, such as special graphical effects, night and day systems, attractive layouts 

for your menus and other extra elements that you can add to your own projects. 

 

The third series, “Engine Works”, will be all about programming – how to create a basic enemy 

A.I. with as little scripting as possible, how to use the Pathfinding object, how to encrypt your 

savegames, how to create a simple save and load system using and array, that kind of stuff.  

 

Finally, “Papa Koobare’s Boot Camp” will be all about the basic basics, stuff that can be really 

interesting for first-timers, but would prove to be too “been there, done that” for anyone who has 

any experience with MMF2 whatsoever. This series will be designed specifically for all you 

nuggets who just took their first few step into the fascinating world of Multimedia Fusion 2. 

 

There will be even more changes coming in future tuts, but let’s not be too hasty, we’ll learn 

about them in proper time. As for now – let’s learn something about the Spacemail Postal 

Service and why it’s the best way to send letters and parcels to distant galaxies…  



Page 4/32 

Spacemail – the postal service of the future! 

 

We’ve all heard that before – the internet proved that the standard, old-fashioned postage 

service isn’t needed anymore, right? Well… Wrong! In 2198 the project to build a spacecable 

internet link-up between Earth and its fourteen colonies failed, when an inch-wide meteor 

crushed into the 927,862,860,849,897 yard long wire, rendering it useless. Four years later the 

wireless connection went out as well – as it seems, sunspot activity had some influence on the 

broadcasted signal, turning all sent e-mails into ancient poetry and hamburger recipes (that – 

for some reason – utilized broccoli and watermelons as the two main ingredients). 

 

Finally, after years of serving dreadful hamburgers, someone had the courage to stand up and 

ask: “so, why not do it in the traditional way?” In July of 2206, World President Bobby “Burger 

Savior” Melikeyapples signed the executive order to create a new interspace agency, tasked 

with delivering letters, packages, Christmas cards and tons of useless spam all across the 

galaxy. Since that day onward, the Galaxy Postage Office’s mailbots rushed from one space 

system to another, enabling Earthlings to communicate with aliens and vice versa. No matter 

how many meteor fields they had to cross, no matter how many supernovas they had to evade 

– the mailbots were always on track, there was always something that had to be delivered, 

someone somewhere was always waiting for that tiny little card or envelope.  

 

 



Page 5/32 

Our story begins twenty years later, on the bizarre planet of Voopookoo. It is here, under the 

ever-green sky, amongst the floating fuel-eating bubbles and strange giant balloons (chained to 

the ground, for some reason), that we find Mailbot 7890-Kappa-91, also known as Raymond, 

trying to deliver the last package in this rotation. He has limited fuel, his boost system is 

somewhat frenzied – really in need of a good tune-up – and he still needs to land on the top of 

that little pink cabin in the distance… The keyword here being “to land”, as opposed to (easier 

achievable) “crash” – blasting through the roof on top speed just ain’t gonna’ do it for him.  

 

Your assignment – as a mailbot operator 

and a true friend of Raymond’s – is to 

help number 7890-Kappa-91 land safely 

and deliver his message. You’re going to 

use all your navigational skills to keep 

those engines going without using up the 

whole fuel tank, to make sure that 

Raymond is ready for the touchdown… 

And then to bring him down, once his 

speed is below “9” on the display… The 

tough part? The engineers that 

constructed this off-location remote 

control system have truly forgotten to put 

any numbers on your screen – you’ll have 

to trust your instincts and decide whether 

the speed is low enough with the help of nothing but your hunch and a visual horizontal-bar 

display… What's more, you better keep an eye on those odd bubbles floating in the air – it 

seems that they have a tendency to evaporate fuel from Raymond’s reserves! Well, no one 

said that the life of a mailbot operator is easy, right? 

 

“You’ve got Spacemail!” – the basics… 

 

Our game starts with a very short (few seconds in length, actually) “intro” of sorts – the mailbot 

appears closer to the “camera”, just to show off a few details and demonstrate to the player 

how he is built. During these few seconds the player has no control over the robot – it has to 

travel up the screen, disappear from the player’s view, and then return in a smaller form (it will 

actually be a different object, but – shush! – keep it for yourself), suggesting that it traveled a bit 

further away. Once it returns on-screen, the mailbot controls are unblocked and the struggle 

between the player, gravitational pull and the fuel-burning begins. 



Page 6/32 

The main goal of the game is to land the mailbot directly on top of the roof – to do so, the player 

must keep the speed at *minimum* when approaching the landing zone and then press “space” 

to initialize the landing sequence. Our gamers control the droid’s movement with the help of the 

cursor keys, using up quite a lot of fuel with every press of the button – the longer they keep 

those buttons pushed, the higher the mailbot goes… But the fuel reserves become emptier and 

emptier as well. Furthermore, collisions with the floating “killer bubbles” take away lots of 

spacegas too – the bigger the bubble, the more fuel it “steals” from the mailbot’s reserves.  

 

The game is lost when the fuel reserves go down to zero (the mailbot will fall down to the 

planet’s surface), when the mailbot touches any of the chained static balloons (not to be 

mistaken with the floating bubbles), or when he collides into the ground or one of the weird 

bonespikes that grow right out of it – there are quite a lot of ways to loose here, as you can see. 

 

So… You now have the basic knowledge about the game we’re going to create… Time to turn 

the theory into practice… Let’s get our game going, shall we? 

 

 



Page 7/32 

 

 If you have any problems with this tutorial, or notice that there are some 

mistakes present, please, contact me and I’ll do my best to help you and 

replace all the errors with correct information. 

 

      Contact me at: marchewkowy@gmail.com 

 

 Note: I’ve been receiving some reports that not all e-mails get to me for some 

reason. Seems that some of them (quite a lot) end up in my spambox or are 

blocked out by the server. I dunno why this is happening, so if you’re experiencing 

any difficulties with delivering me a message or haven’t received a reply in quite some 

time, please, send me another e-mail at marchewkowy@wp.pl, making sure that its 

title begins with “To Koobare:”. I’ll do my best to check both these e-mails regularly. 

 

 

 

Part I: Setting up the application 

 

Time to get to your mailbot, people are waiting for their Spacemail to be delivered! I’ll start 

off simple, by showing you how to establish the ground for our work – or, simply put, how to 

create and set up our application. If you already know how to do this and/or are tired of such 

a basic approach, just head to Part II of this tutorial (a few pages down). This section is meant 

for the rooks, people who are still more on the “beginner” level than the “beginner intermediate”.  

 

Anyways, here we go… Open Multimedia Fusion 2, 

create a new application and save it onto your hard drive 

(it’s always a good idea to have the Autobackup option of 

MMF2 turned on – check your MMF2’s Preferences). 

Rename it to “You’ve got Spacemail”. Now, go to your 

application’s Properties window (if it didn’t open up by 

itself, right click on your application’s name in the 

workspace toolbar and select Properties from the drop-

down menu), and select the Window tab (second from the 

left). Set the window size to 840x600. If MMF2 asks you if 

you’d like to modify the size of the existing frame as well, 

select “Yes”. If it doesn’t ask you for itself, just open up the 



Page 8/32 

Storyboard Editor and manually change the size of the frame to 840x600. If you wish, you may 

easily brand our game – return to the Properties window of your application (you may need to 

click the name of your application in the Workspace toolbar), select the About tab (first from 

the right), and change the “Description” field to “You’ve got Spacemail! – The Tutorial”. 

 

Once you’re done with that, open up the Values tab (third one from the right, the one with the 

“A-Z” symbol), which will enable us to edit the Global Values for our application. We actually 

need just one GV: create it and name it “Delivered”, making sure that it’s set to zero. This will 

prove useful a bit later on. Got it? Great! That means that it’s time for Part II. Move on! 

 

 

 

 

 

 Interested in one game type in particular? Would like to learn about something 

that hasn’t been covered in any of the released tutorials yet? Got an idea that 

could interest other tutorial-readers? Just drop me an e-mail! 

 

      Contact me at: marchewkowy@gmail.com 

      or write to the auxiliary address: marchewkowy@wp.pl 

 



Page 9/32 

Part II: Making your life a bit easier…  

 

Since my third tutorial I’ve always been facing a dilemma while writing the part two of any tut 

– traditionally the section in which we get hold of all the objects needed (not always, though, 

sometimes this happens in part three or even four, depending on the layout of that particular 

document). This ever-occurring dilemma goes like this: should I do everything – and I mean 

EVERYTHING – step-by-step, in a “I’ll take your hand and take you with me” kind of thing, or 

not? Should I make sure that you – the readers, the users, people who I write for – take each 

and every object on the list and create all of them by yourself, placing them into the right 

positions, setting up all the preferences, fade-in effects, etc… Or should I rather not bore you to 

death, since you had to do 

this three times in the last 

two weeks already and you 

sure as heck know every 

little detail about placing a 

new background or an active 

object into the frame? 

 

As these tutorials evolved 

(by the way, have you 

noticed the huge graphical 

progress that we’ve made 

since “Smelly Claw”?), so did my solutions to this ever-present dilemma. At first I decided to let 

you just copy all the objects from a previously prepared application – just a simple copy ’n’ 

paste operation and we were home. Recently, I’ve came up with a more logical solution – after 

the introduction and the optional “setting up the application” part we’re simply going to open up 

that pre-prepped app and use it as the base for our project. This solution will now be applied in 

all beginner-intermediate and intermediate level tutorials, whereas tuts for novices will be 

treated with a “hands-on all the away” approach.  

 

Since we’re now clear about this, let’s not waste any more time on organizational issues… 

There were quite a lot of them in this doc already, since I’m reorganizing everything to match 

your suggestions and my own modernizing concepts… But that’s it, I promise. To continue, just 

close what you’ve done so far (if you actually didn’t just skip section I of this tut) and open up 

the you’ve-got-spacemail-start.mfa file (should be in the same directory as this tutorial, 

since they were packed together into the same archive). And then it’s time for… 



Page 10/32 

 

    Please note: most of the objects use alpha channels, a feature that is 

    unavailable in Games Factory 2 (TGF2 users should use basic library 

    objects or create their own graphics instead – I generally would advise you  

    to upgrade to MMF2 as soon as possible, since you’re missing out on some  

    really good stuff, a lot of quite impressive features). 

   

 

 

Part III: Knowing what’s what.  

 

Once you’ve opened our basis app, open up the first and only frame (it should be entitled 

“Spacemail”) and take a look around. There’s a bunch of objects laying around, just waiting for 

you to give them a purpose, to script them all together into a nice, good-playin’ game.  

 

You should be looking at something like this right now: 

 

 



Page 11/32 

 Notice the red-colored “detectors” that cover a big chunk of the background… Not looking 

very well, are they? Not really blending in with the rest of the objects? Don’t be worried, they 

won’t be seen in the game, as we will make them invisible. They are here to help us detect the 

moment in which the mailbot crashes into one of the balloons or into the ground.  

 

Now, choose one at random and check out the “Events” tab in its 

properties window (it’s the second tab from the right)… Notice 

that they are all assigned to the “Traps” qualifier group, which 

will enable us to easily create events that control all five of them 

at the same moment, with just a single line of code. This will 

prove useful (saving us some time and making our code better 

organized, cleaner) a bit later on, in the scripting part of this 

tutorial. 

 

Another thing to notice here: there are two mailbots present outside 

the frame. The first one to the left is a bit bigger, with a simple path 

movement set in its preferences – this is the “intro” mailbot. The 

second one, more to the right and top corner of the screen,  is the 

actual mailbot that will be used during the gameplay – it has a 

preconfigured “Bouncing Ball” movement, with the “initial direction” 

pointing down (direction number 24). Of course, it won’t be behaving 

like a bouncing ball once we’re done with it – this movement is just a 

great basis for creating your own, custom ones. 

 

Time to check out all those little details of all those little objects laying around the frame… 

Below you can find an alphabetical list of all the objects, with their short description, their 

purpose and some characteristic properties all written down… Enjoy: 

 

Object’s name: So… What is it? 

 
backdrop 

 
Just a simple backdrop object – the background for our game.  
 
W H Y  I T ’ S  H E R E ?  
 

Well, we need some kind of a background, don’t we…? This is a picture 
that I’ve put together for this tut, it shows the bizarre world of Voopookoo, 
a distant planet colonized a few years ago by fearless pioneers from 
Australian Outback (somehow they didn’t mind living amongst deserts and 
sun-burned canyons full of snakes and giant spiders). One of these 
pioneers awaits news about his family on Earth –  it’s imperative that we 
deliver him his messages as soon as possible!    
 



Page 12/32 

 
boost.counter 

 
A horizontal bar counter, used to control our mailbot’s boost. 
 
P R O P E R T I E S  
 

It is set as a horizontal bar counter, counting from left, with a vertical 
gradient fill type (set to two different shades of green). Its Initial and 
Minimum Values are both set to 0, its Maximum Value is set to 50. 
 
W H Y  I T ’ S  H E R E ?  
 

Because we need some way of controlling our maildroid’s engine boost. 
 
H OW  D O E S  I T  W O R K ?  
 

Well, it’s a pretty simple system, really… During the time that the “Up 
Arrow” button is being pushed, “1” is added to this counter on every loop. 
Furthermore, when that condition is met, the current value of this counter 
is subtracted from the “fuel.counter” object’s value. When the “Up Arrow” 
button is NOT being pressed,”1” is subtracted from the current value. If the 
“Down Arrow” button is being pressed, we subtract “3”.  
 

 
engine.smoke  
and engine.smoke 2 

 
Two active objects acting as smoke puffs from our mailbot’s engines,  
 
T R A N S I T I O N S  
 

Both “engine.smoke” objects have their fade-out transitions already set 
for you – the first one is set to “Zoom” (at 0.56 of a second), the second 
one is set to “Fade” (set to a tiny duration of 0.22 of a second).  
 
W H Y  I T ’ S  H E R E ?  
 

Thanks to my usual smoke-related trick (create a “smokey” object with a 
nice fade-out transition and destroy it immediately) we’ll have a nice visual 
effect around our mailbot’s engines. 
 

 
explosion 

 
Active object used as our explosion blast. 
 
I N K  E F F E C T  
 

The Ink Effect of this object has been set to Add. This will give us a nice 
visual effect of a blindingly white explosion. 
 
T R A N S I T I O N S  
 

The fade-out transition of this object is set to “Zoom” (0.34 sec.). 
 
W H Y  I T ’ S  H E R E ?  
 

‘Cause we needed an explosion – a visual effect that will appear when our 
mailbot hits one of the balloons or falls onto the ground (in fact hitting one 
of the red-colored “detectors” that we talked about a bit sooner). 
 

 
fuel.counter 

 
A horizontal bar counter, used to control our mailbot’s fuel reserves. 
 
P R O P E R T I E S  
 

It is set as a horizontal bar counter, counting from left, with a vertical 
gradient fill type (set to two different shades of red). Its Initial and 
Maximum Values are both set to 35000, its Minimum Value is set to 0. 
 
W H Y  I T ’ S  H E R E ?  
 

Because this whole game is about fuel: if you use up too much, you won’t 
be able to land and you’ll crash miserably. 
 



Page 13/32 

 
H O W  D O E S  I T  W O R K ?  
 

This will look a lot easier in the Event Editor than on paper (or on the 
PDF’s pages, in fact), but here it goes: on every loop subtract “1” from 
this counter, when the “Up Arrow” is pressed, subtract the value of the 
“boost.counter” object, if the left or right arrow keys are pressed, 
subtract “2”. If the mailbot object crashes into a small bubble, subtract 
“800”. If it crashed into a medium-sized bubble – subtract “1000”. If it was 
a big bubble – subtract “1500”. 
 

 
killer.bubble.big 

 
A big, pink floating bubble that eats up our mailbot’s fuel reserves.  
 
T R A N S I T I O N S  
 

The fade-out and fade-in of this object are both set to “Zoom” (0.79 sec). 
 
M O V E M E N T  
 

The movement is set to “Bouncing Ball”, with Speed set at “5”, 
Deceleration at “0”, the “Moving at start” option being turned on. 
 
H OW  D O E S  I T  W O R K ?  
 

Well, it’s pretty simple: once the mailbot crashes into this bubble, it breaks 
apart with a “pop!” sound, eats up some fuel and then reappears in a 
random position on the screen. Furthermore, from time to time a randomly 
selected “killer.bubble.big” object suddenly changes its direction, without 
any previous notice… 
 

 

 
 

 
killer.bubble.small 
and 
killer.bubble.medium 

 
Smaller versions of the “killer.bubble.big” object. 
 
W H Y  I T ’ S  H E R E ?  
 

Well, they have exactly the same purpose as their bigger brother, 
“killer.bubble.big” – they’re here to eat up the player’s fuel… 
 
M O V E M E N T  &  T R AN S I T I O N S  
 

They’re basically the same as in the “killer.bubble.big” object, the only 
difference is that the “killer.bubble.small” has a shorter duration set for the 
“Zoom” fade-out (0.56 of a second) and fade-in (0.67) transitions. 
 



Page 14/32 

 
landing.zone 

 
The landing zone for our mailbot (made invisible at the start of the frame).  
 
W H Y  I T ’ S  H E R E ?  
 

A small active object that is used as the “landing zone” for our mailbot – 
our droid will land only when it is in collision with this object (it also needs 
to have the proper speed and the space bar must be pushed in the right 
moment). It is placed on the pink spacecabin’s roof. 
 

 
randomizer  

 
A small active object that changes it position at random on every loop. 
 
W H Y  I T ’ S  H E R E ?  
 

This object helps us to randomize the location at which a new bubble is 
created once it has ruptured during a collision with our mailbot. Its X 
position is chosen randomly from the range of 0 to 830, whereas its Y 
position is set to something from the area of 0 to 590. 
 

 
mailbot.game 

 
Our main protagonist – Mailbot 7890-Kappa-91, also known as Raymond.  
 
T R A N S I T I O N S  
 

The fade-out transition of this object is set to “Zoom” (1.58 sec.). 
 
M O V E M E N T  
 

The movement is set to “Bouncing Ball”, with Speed set to “30”, 
Deceleration at “0”, the “Moving at start” option being turned off, 
whereas the Initial direction being set to 24 (down). 
 
W H Y  I T ’ S  H E R E ?  
 

Well, this is the hero of our game – where else should he be? We control 
Raymond with the help of the Arrow keys. To land him on the roof of the 
spacecabin, just get him close enough (and that means really, really 
close), slow down his fall and then press space. 
 

 
mailbot.intro 

 
The mailbot used in our short “intro”. 
 
W H Y  I T ’ S  H E R E ?  
 

We’ve already learned everything there is to learn about this object. If you 
require more information, just “reverse engineer” it, by checking out its 
movement settings and animation frames.  
 

 
sign.boost 
and sign.fuel 
and sign.speed 

 
Three little active objects that act as the background for our counters.  
 
W H Y  I T ’ S  H E R E ?  
 

Well, to be honest, they’re here just to make those counters look better… 
Oh, and they have names on them too, so I guess that “informational 
purposes” count as well.  
 

 
speed.counter 

 
A horizontal bar counter, used to display our mailbot’s speed. 
 
P R O P E R T I E S  
 

It is set as a horizontal bar counter, counting from left, with a vertical 
gradient fill type (set to orange and brown). Its Initial and Minimum 
Values are both set to 0, its Maximum Value is set to 35. 
 



Page 15/32 

 
W H Y  I T ’ S  H E R E ?  
 

Well, because we really need to give the player some tips on how fast his 
mailbot is going… 
 
H O W  D O E S  I T  W O R K ?  
 

This counter is less important for the overall game engine than the last two 
were – but still, it’s crucial if we want Raymond’s expedition to have a 
happy ending. This counter is checked for its value during the landing – 
and it is always set to have the same speed as the “mailbot.game” object. 
 

 
trap.ground 
and trap.balloon.1 
and trap.balloon.2 
and trap.balloon.3 
and trap.balloon.4 

 
Five “trap” objects – the red, invisible collision detectors. 
 
P R O P E R T I E S  
 

All of these objects share a common qualifier – they all belong to the 
group entitled “Traps”. 
 
W H Y  I T ’ S  H E R E ?  
 

So that we know when does the collision between the mailbot and the 
ground (or the chained balloons) take place. 
 
H O W  D O E S  I T  W O R K ?  
 

Nothing fancy here: all the “traps” are hidden at the start of the frame, but 
even when they are invisible, a collision with any of them will bring our 
mailbot down, smashing it to pieces. 
 

 

The invisible detectors 

 

A nice thing to remember for the future, to use in your own projects, especially those with a 

giant bitmap background: using invisible detectors instead of slicing your background into 

separate objects can sometimes prove quite useful and save you a lot of time.  

 

Part IV: Time for a bit of programming. 

 

It’s time for my favorite part! Save your project (always remember to save it from time to time, 

that’s a must!) and open the Event Editor. If you’re new to my tutorials, let me introduce you 

to the event-recording system that I use. If you know it already – just skip this frame below and 

quickly move on to the coding part: 

 

 

Koobare’s MMF-to-paper coding system 

 

      IF (Condition): [Object for the condition] > Condition group > Condition 

      THEN (Action): [Object for the action] > Action group > Action   

 



Page 16/32 

 

Seems simple, right? Well, that’s just because IT IS simple. All the conditions are 

marked in red, while actions are written in fancy blue. 

 

Object names are always put in [square brackets]. The final condition/action is 

always in Italic. If we’ll have a multi-condition event, then it’ll be like this: 

 

      IF (Condition 1): [Object for condition 1] > Condition group 1 > Condition 1 

      IF (Condition 2): [Object for condition 2] > Condition group 2 > Condition 2 

      THEN (Action): [Object for the action] > Action group > Action 

 

Whereas a multi-action event looks like this: 

 

      IF (Condition): [Object for condition] > Condition group > Condition 

      THEN (Action 1): [Object for the action 1] > Action group 1 > Action 1 

      THEN (Action 2): [Object for the action 2] > Action group 2 > Action 2 

 

If you’ll have to input anything by keyboard, it will be indicated by coloring the text 

green and using < angle brackets >, like this (this marking will be soon obsolete): 

 

       < Set the Global Value A to 32 > 

 

Additional comments, instructions and info will be put in << double angle 

brackets >>, using a different color (this marking will soon be also used for input): 

 

       << Select any wave sound from the MMF2’s sound library >> 

  

From time to time I’ll also use this style to throw in some extra tips and tricks 

about MMF2 and more advanced coding techniques. All you have to do is to go 

step-by-step through all the listed events and keep one eye on your Event Editor, 

and the second one on this tutorial…  

 

 

 

Let’s deliver some Spacemail, already! 

 

1) Firstly, let’s start off with the conventional “Start of frame” event, which I usually create at 

the very beginning of the events list. This event – triggered when someone starts our game – 



Page 17/32 

will make quite a lot of objects invisible (all the traps, all the counters, all the “sign” objects, the 

landing zone and the randomizer – the “signs” and counters will be returned to their visible 

status once our little “intro” has ended) and, in addition, will play two sample files (search for 

the “Warm up.wav” sound on your MMF2 Bonus Materials disc, whereas the “flyjet-cut.wav” 

file is supplied in the same archive as this tutorial): 

 

IF: [Storyboard Controls] > Start of frame 

THEN: [Group.Traps] > Visibility > Make invisible 

THEN: [randomizer] > Visibility > Make invisible 

THEN: [landing.zone] > Visibility > Make invisible 

THEN: [speed.counter] > Visibility > Make invisible 

THEN: [fuel.counter] > Visibility > Make invisible 

THEN: [boost.counter] > Visibility > Make invisible 

THEN: [sign.fuel] > Visibility > Make invisible 

THEN: [sign.speed] > Visibility > Make invisible 

THEN: [sign.boost] > Visibility > Make invisible 

THEN: [Sound Object] > Samples > Play and loop sample  

<< Choose the “Warm Up.wav” sound, loop it 0 times, which means infinitely >> 

THEN: [Sound Object] > Samples > Play and loop sample  

<< Choose the “flyjet-cut.wav” sound, loop it 0 times, which means infinitely >> 

 

And with just a bit of MMF2 magic – we’ve got our first event up and ready! Ain’t it great?  

 

Now, before we march onto the next event, let’s set up all the Event Groups that we’ll need in 

our event list… Firstly, create three groups beneath the first event and call them “Intro”, 

“Spacemail” and “Landed” respectively. Make sure that both “Intro” and “Landed” have the 

“Active when frame starts” option turned ON, whereas “Spacemail” should have this option 

turned OFF. Once that’s done, open up the “Spacemail” group and create two more subgroups 

inside of it: “Engines” and “Killer Bubbles” (both should be set active when frame starts). And 

just when you thought we were done with all of this grouping… let’s create another subgroup! 

Create it inside the “Engines” group and name it “Engine Smoke” (once again – let it be active 

when frame starts)… Got it? Great! We can now finally move on to some more scripting! 

 

2) Time for our event numero duo! This one ends our “intro” stage (which will last for a whole 5 

seconds, folks) enabling all those “sign” objects and counters to reappear once again… This 

little thingie will also destroy the “mailbot.intro” object, play around with group activation and 

start off two sound samples… Just follow my lead, and we’ll be there in no time:  

 



Page 18/32 

IF: [The Timer Object] > Is the timer equal to a certain value? 

<< Set the timer to  5  seconds >> 

THEN: [mailbot.intro] > Destroy 

THEN: [Special Object] > Group of events > Activate 

<< Select the Spacemail group >> 

THEN: [speed.counter] > Visibility > Make object reappear 

THEN: [fuel.counter] > Visibility > Make object reappear 

THEN: [boost.counter] > Visibility > Make object reappear 

THEN: [sign.fuel] > Visibility > Make object reappear 

THEN: [sign.speed] > Visibility > Make object reappear 

THEN: [sign.boost] > Visibility > Make object reappear 

THEN: [Sound Object] > Samples > Play sample  

<< Choose the “PULSE07.wav” sound >> 

THEN: [Sound Object] > Samples > Stop a specific sample  

<< Choose the “flyjet-cut.wav” sound >> 

THEN: [Special Object] > Group of events > Deactivate 

<< Select the Intro group >> 

 

Got it? Well then, good for you! Drag and drop this event to the second position in the events 

list (just for neatness’ sake), just above the “Intro” group...  

 

 



Page 19/32 

3) Now its time to work on that little 5-second-long “intro” of ours… Create all these events 

inside the “Intro” event group, one after another:  

 

IF: [The Timer Object] > Every 

<< Set the timer to  0.17  of a second >> 

THEN: [Create New Objects] > Create Object 

<< Select the [engine.smoke 2] object >> 

<< Set the coordinates to x=-38, y=75, relative to [mailbot.intro] object >> 

THEN: [Create New Objects] > Create Object 

<< Select the [engine.smoke 2] object >> 

<< Set the coordinates to x=38, y=76, relative to [mailbot.intro] object >> 

THEN: [Create New Objects] > Create Object 

<< Select the [engine.smoke 2] object >> 

<< Set the coordinates to x=44, y=58, relative to [mailbot.intro] object >> 

THEN: [Create New Objects] > Create Object 

<< Select the [engine.smoke 2] object >> 

<< Set the coordinates to x=-47, y=59, relative to [mailbot.intro] object >> 

 

Aaaand here’s the second one, remember to put these in the “Intro” group: 

 

IF: [The Timer Object] > Every 

<< Set the timer to  0.21  of a second >> 

THEN: [Create New Objects] > Create Object 

<< Select the [engine.smoke 2] object >> 

<< Set the coordinates to x=-48, y=74, relative to [mailbot.intro] object >> 

THEN: [Create New Objects] > Create Object 

<< Select the [engine.smoke 2] object >> 

<< Set the coordinates to x=43, y=71, relative to [mailbot.intro] object >> 

THEN: [Create New Objects] > Create Object 

<< Select the [engine.smoke 2] object >> 

<< Set the coordinates to x=30, y=59, relative to [mailbot.intro] object >> 

THEN: [Create New Objects] > Create Object 

<< Select the [engine.smoke 2] object >> 

<< Set the coordinates to x=-31, y=51, relative to [mailbot.intro] object >> 

 

 

 



Page 20/32 

Same drill, same group, almost identical event… 

 

IF: [The Timer Object] > Every 

<< Set the timer to  0.25  of a second >> 

THEN: [Create New Objects] > Create Object 

<< Select the [engine.smoke 2] object >> 

<< Set the coordinates to x=-38, y=67, relative to [mailbot.intro] object >> 

THEN: [Create New Objects] > Create Object 

<< Select the [engine.smoke 2] object >> 

<< Set the coordinates to x=38, y=64, relative to [mailbot.intro] object >> 

 

Here’s something a bit different – two last events that go into the “Intro” event group… 

 

IF: [Special Object] > Always 

THEN: [engine.smoke 2] > Animation > Change > Animation Sequence 

<< select “Smoke” >> 

 

IF: [engine.smoke 2] > Movement > Is stopped? 

THEN: [engine.smoke 2] > Destroy 

 

And that concludes our efforts when it comes to the “Intro” group… You can take a look at this 

visual aid to see how it looks in my Event Editor… 

 

 

 

4) Let’s continue… Open up the “Spacemail” group (have you remembered to make this group 

inactive when frame starts?) and create this little event: 

 

IF: [Special Object] > Group of events > On group activation 

THEN: [mailbot.game] > Movement > Start 

 

This little thingie ensures that our mailbot (the game one, not the intro one) will be moving once 

the actual game starts (when the timer hits 5 seconds and activates the “Spacemail” group).  



Page 21/32 

5) Step five: another event that goes right into the “Spacemail” group… Notice that the value of 

the “speed.counter” object is always exact as the speed of the “mailbot.game” one. You can 

also observe how the “randomizer” is forced to jump to a random position on every loop: 

 

IF: [Special Object] > Always  

THEN: [fuel.counter] > Subtract from Counter 

<< input: 1 >> 

THEN: [speed.counter] > Set Counter 

<< input:   Speed( "mailbot.game" )   >> 

THEN: [randomizer] > Position > Set X position    

<< input:   Random(830)  >> 

THEN: [randomizer] > Position > Set Y position    

<< input:   Random(590)  >> 

THEN: [engine.smoke] > Destroy  

 

6) Yet another simple thingie that goes into the “Spacemail” event directory… 

 

IF: [mailbot.game] > Position > Test position 

<< Select “Leaves in the top?” – arrow leaving the frame at the top >> 

<< Select “Leaves in the right?” – arrow leaving the frame to the right >> 

<< Select “Leaves in the bottom?” – arrow leaving the frame at the bottom >> 

<< Select “Leaves in the left?” – arrow leaving the frame to the left >> 

THEN: [mailbot.game] > Movement > Bounce 

 

7) Let’s see what happens when our mailbot crashes into one of the collision detectors… 

 

IF: [mailbot.game] > Collisions > Another object > [Group.Traps] 

THEN: [Create New Objects] > Create Object 

<< Select the [explosion] object >> 

<< Set the coordinates to x=1, y=12, relative to [mailbot.game] object >> 

THEN: [Sound Object] > Samples > Play sample  

<< Choose the “EXPLOD03.wav” sound >> 

THEN: [Sound Object] > Samples > Play sample  

<< Choose the “CLATTER2.wav” sound >> 

THEN: [mailbot.game] > Destroy  

THEN: [Sound Object] > Samples > Stop a specific sample  

<< Choose the “flyjet-cut.wav” sound >> 

THEN: [Sound Object] > Samples > Stop a specific sample  

<< Choose the “KNOCK.wav” sound >> 



Page 22/32 

8) We’re still in the “Spacemail” group, remember that – every event from step 4 up until now 

(and up until step 11) goes into that set… Here’s a simple event for ya’: 

 

IF: [explosion] > Animation > Has an animation finished? 

<< select “Stopped” >> 

THEN: [explosion] > Destroy  

THEN: [Sound Object] > Samples > Play sample  

<< Choose the “Bash 2.wav” sound >> 

 

9) Here’s what happens when our mailbot has been destroyed… 

 

IF: [mailbot.game] > Pick or count > Have all been destroyed? 

THEN: [Storyboard Controls] > Restart the current frame 

 

10) Here’s a bit longer event, that is commenced once the mailbot’s fuel reserves are down to 

zero… Basically this makes our mailbot fall from the skies… 

 

IF: [fuel.counter] > Compare the counter to a value 

<< compare whether it is Lower or Equal 0 >> 

THEN: [Special Object] > Group of events > Deactivate 

<< Select the Engines group >> 

THEN: [mailbot.game] > Direction > Select direction    

<< Select direction 24 (down) >> 

THEN: [speed.counter] > Visibility > Make invisible 

THEN: [fuel.counter] > Visibility > Make invisible 

THEN: [boost.counter] > Visibility > Make invisible 

THEN: [sign.fuel] > Visibility > Make invisible 

THEN: [sign.speed] > Visibility > Make invisible 

THEN: [sign.boost] > Visibility > Make invisible 

THEN: [mailbot.game] > Animation > Change > Animation Sequence 

<< Select “Falling” >> 

THEN: [mailbot.game] > Movement > Set Speed… 

<< Type this in: 50 >> 

THEN: [Sound Object] > Samples > Stop a specific sample  

<< Choose the “flyjet-cut.wav” sound >> 

 

11) And here’s the last event that’s going to go directly into the “Spacemail” event group… This 

one is just a supplement to the previous one. 

 



Page 23/32 

IF: [fuel.counter] > Compare the counter to a value 

<< compare whether it is Lower or Equal 0 >> 

IF: [Special Object] > Limit conditions > Run this event once 

THEN: [Sound Object] > Samples > Play and loop sample  

<< Choose the “KNOCK.wav” sound, loop it 0 times, which means infinitely >> 

THEN: [Sound Object] > Samples > Play sample  

<< Choose the “Impact fx 1.wav” sound >> 

 

You can once again compare your progress with mine, helps to this little visual aid: 

 

 

 

Once you’re done comparing, let’s get back to business…  

 



Page 24/32 

12) Now it’s time to open up that “Engines” event group. Create all these events inside this set 

– they are all responsible for steering, for controlling the mailbot on runtime: 

 

IF: [boost.counter] > Compare the counter to a value 

<< compare whether it is Greater or equal 30 >> 

THEN: [mailbot.game] > Direction > Select direction    

<< Select direction 8 (up) >> 

THEN: [mailbot.game] > Movement > Set Speed… 

<< input:   0-(30-value( "boost.counter" ))   >> 

 

IF: [boost.counter] > Compare the counter to a value 

<< compare whether it is Lower than 30 >> 

THEN: [mailbot.game] > Direction > Select direction    

<< Select direction 24 (down) >> 

THEN: [mailbot.game] > Movement > Set Speed… 

<< input:   35-value( "boost.counter" )  >> 

 

IF: [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed 

<< press UP ARROW on your keyboard >> 

THEN: [boost.counter] > Add to Counter 

<< input: 1 >> 

THEN: [fuel.counter] > Subtract from Counter 

<< input:   value( "boost.counter" )   >> 

 

Here’s an event with a negated condition. To negate a condition just right-click on it and choose 

“negate” from the drop-down menu: 

 

[NEGATE] IF: [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed 

<< press UP ARROW on your keyboard >> 

THEN: [boost.counter] > Subtract from Counter 

<< input: 1 >> 

 

IF: [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed 

<< press DOWN ARROW on your keyboard >> 

THEN: [boost.counter] > Subtract from Counter 

<< input: 3 >> 

 

Now it’s the time for a series of events that will help us to control the sideways movement of 

Mailbot 7890-Kappa-91 (which can prove pretty useful when navigating, don’t you think?): 
 



Page 25/32 

IF: [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed 

<< press LEFT ARROW on your keyboard >> 

IF: [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed 

<< press UP ARROW on your keyboard >> 

THEN: [mailbot.game] > Direction > Select direction    

<< Select direction 12 (top-left) >> 

THEN: [fuel.counter] > Subtract from Counter 

<< input: 2 >> 

 

IF: [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed 

<< press RIGHT ARROW on your keyboard >> 

IF: [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed 

<< press UP ARROW on your keyboard >> 

THEN: [mailbot.game] > Direction > Select direction    

<< Select direction 4 (top-right) >> 

THEN: [fuel.counter] > Subtract from Counter 

<< input: 2 >> 

 

IF: [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed 

<< press LEFT ARROW on your keyboard >> 

[NEGATE] IF: [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed 

<< press UP ARROW on your keyboard >> 

THEN: [mailbot.game] > Direction > Select direction    

<< Select direction 22 (down-left) >> 

THEN: [fuel.counter] > Subtract from Counter 

<< input: 2 >> 

 

IF: [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed 

<< press RIGHT ARROW on your keyboard >> 

[NEGATE] IF: [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed 

<< press UP ARROW on your keyboard >> 

THEN: [mailbot.game] > Direction > Select direction    

<< Select direction 26 (down-right) >> 

THEN: [fuel.counter] > Subtract from Counter 

<< input: 2 >> 

 

Thanks to these little four events our mailbot will be able to maneuver around those crazy 

chained balloons and deadly fuel-eating bubbles… Good work! Don’t get too relaxed, though, 

there’s still a lot to do… These two events will control the sound of the mailbot’s engine: 



Page 26/32 

IF: [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed 

<< press UP ARROW on your keyboard >> 

IF: [Special Object]>> Limit conditions>> Only one action when event loops 

IF: [fuel.counter] > Compare the counter to a value 

<< compare whether it is Greater than 1 >> 

THEN: [Sound Object] > Samples > Play and loop sample  

<< Choose the “flyjet-cut.wav” sound, loop it 0 times, which means infinitely >> 

 

[NEGATE] IF: [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed 

<< press UP ARROW on your keyboard >> 

IF: [Special Object]>> Limit conditions>> Only one action when event loops 

THEN: [Sound Object] > Samples > Stop a specific sample  

<< Choose the “flyjet-cut.wav” sound >> 

 

13) And that’s all when it comes to the “Engines” group… Let’s move on to the next event set – 

the “Engine smoke” one. Open it up and create these two events inside (both are responsible 

for creating our cool smoke-like visual effect): 

 

IF: [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed 

<< press UP ARROW on your keyboard >> 

IF: [The Timer Object]>> Every 

<< Set the timer to  0.14  of a second >> 

IF: [fuel.counter] > Compare the counter to a value 

<< compare whether it is Greater than 1 >> 

THEN: [Create New Objects] > Create Object 

<< Select the [engine.smoke] object >> 

<< Set the coordinates to x=-15, y=29, relative to [mailbot.game] object >> 

THEN: [Create New Objects] > Create Object 

<< Select the [engine.smoke] object >> 

<< Set the coordinates to x=17, y=31, relative to [mailbot.game] object >> 

 

IF: [Keyboard & Mouse Object] > The Keyboard > Repeat while key is pressed 

<< press UP ARROW on your keyboard >> 

IF: [The Timer Object]>> Every 

<< Set the timer to  0.34  of a second >> 

IF: [fuel.counter] > Compare the counter to a value 

<< compare whether it is Greater than 1 >> 

THEN: [Create New Objects] > Create Object 

<< Select the [engine.smoke] object >> 

<< Set the coordinates to x=-19, y=34, relative to [mailbot.game] object >> 



Page 27/32 

THEN: [Create New Objects] > Create Object 

<< Select the [engine.smoke] object >> 

<< Set the coordinates to x=19, y=34, relative to [mailbot.game] object >> 

 

Just a little visual aid if you’d like some comparison… 

 

 

 

14) We’re abandoning the “Engine smoke” group, moving up to the “Killer Bubbles” one. As 

the name suggests, this one is all about those weird bubbles floating on the screen. Create all 

the events below inside this group: 

 

IF: [mailbot.game] >> Collisions >> Another object >> [killer.bubble.big] 

THEN: [killer.bubble.big] >> Destroy  

THEN: [Create New Objects] > Create Object 

<< Select the [killer.bubble.big] object >> 

<< Set the coordinates to x=0, y=0, relative to [randomizer] object >> 

THEN: [fuel.counter] > Subtract from Counter 

<< input: 1500 >> 

THEN: [Sound Object] > Samples > Play sample  

<< Choose the “POP1.wav” sound >> 

 

IF: [mailbot.game] >> Collisions >> Another object >> [killer.bubble.medium] 

THEN: [killer.bubble.medium] >> Destroy  

THEN: [Create New Objects] > Create Object 

<< Select the [killer.bubble.medium] object >> 

<< Set the coordinates to x=0, y=0, relative to [randomizer] object >> 

THEN: [fuel.counter] > Subtract from Counter 

<< input: 1000 >> 

THEN: [Sound Object] > Samples > Play sample  

<< Choose the “POP1.wav” sound >> 

 

 

 



Page 28/32 

IF: [mailbot.game] >> Collisions >> Another object >> [killer.bubble.small] 

THEN: [killer.bubble.small] >> Destroy  

THEN: [Create New Objects] > Create Object 

<< Select the [killer.bubble.small] object >> 

<< Set the coordinates to x=0, y=0, relative to [randomizer] object >> 

THEN: [fuel.counter] > Subtract from Counter 

<< input: 800 >> 

THEN: [Sound Object] > Samples > Play sample  

<< Choose the “POP1.wav” sound >> 

 

 

 

If any of the killer bubbles leaves the play area (they’re floating randomly in all directions, so 

that’s gonna’ happen a lot), they are wrapped around it (appear from the other side): 

 

IF: [killer.bubble.big] >> Position >> Test position 

<< Select “Leaves in the top?” – arrow leaving the frame at the top >> 

<< Select “Leaves in the right?” – arrow leaving the frame to the right >> 

<< Select “Leaves in the bottom?” – arrow leaving the frame at the bottom >> 

<< Select “Leaves in the left?” – arrow leaving the frame to the left >> 

THEN: [killer.bubble.big] >> Movement >> Wrap around play area 

 

IF: [killer.bubble.medium] >> Position >> Test position 

<< Select “Leaves in the top?” – arrow leaving the frame at the top >> 

<< Select “Leaves in the right?” – arrow leaving the frame to the right >> 

<< Select “Leaves in the bottom?” – arrow leaving the frame at the bottom >> 

<< Select “Leaves in the left?” – arrow leaving the frame to the left >> 

THEN: [killer.bubble.medium] >> Movement >> Wrap around play area 

 



Page 29/32 

IF: [killer.bubble.small] >> Position >> Test position 

<< Select “Leaves in the top?” – arrow leaving the frame at the top >> 

<< Select “Leaves in the right?” – arrow leaving the frame to the right >> 

<< Select “Leaves in the bottom?” – arrow leaving the frame at the bottom >> 

<< Select “Leaves in the left?” – arrow leaving the frame to the left >> 

THEN: [killer.bubble.small] >> Movement >> Wrap around play area 

 

From time to time one of the bubbles – chosen at random – suddenly bounces… 

 

IF: [The Timer Object]>> Every 

<< Set the timer to  1.00  second >> 

IF: [killer.bubble.big] >> Pick or count >> Pick one at random 

IF: [Special Object] >> X chances out of Y random 

<< Input value: 1 >> 

<< Input value: 7 >> 

THEN: [killer.bubble.big] >> Movement >> Bounce 

 

IF: [The Timer Object]>> Every 

<< Set the timer to  1.00  second >> 

IF: [killer.bubble.medium] >> Pick or count >> Pick one at random 

IF: [Special Object] >> X chances out of Y random 

<< Input value: 1 >> 

<< Input value: 8 >> 

THEN: [killer.bubble.medium] >> Movement >> Bounce 

 

IF: [The Timer Object]>> Every 

<< Set the timer to  1.00  second >> 

IF: [killer.bubble.small] >> Pick or count >> Pick one at random 

IF: [Special Object] >> X chances out of Y random 

<< Input value: 1 >> 

<< Input value: 12 >> 

THEN: [killer.bubble.small] >> Movement >> Bounce 

 

Got it? Great! That means that we are just two events from finally completing this tutorial! 

Woah, this was a big one, wasn’t it? Anyway, we’ll chit-chat a bit later – it’s time to get to the 

finish line, to get all of this up and running!  

 

14) Leave the “Killer Bubbles” group and go to the next one – the one entitled “Landed”. These 

two events control what happens when the player actually manages to get our mailbot close 

enough to the spacecabin and to press space bar on time: 



Page 30/32 

 

IF: [Keyboard & Mouse Object] >> The Keyboard >> Upon pressing a key 

<< press SPACE BAR on your keyboard >> 

IF: [mailbot.game] >> Collisions >> Another object >> [landing.zone] 

IF: [speed.counter] > Compare the counter to a value 

<< compare whether it is Lower or Equal 9 >> 

IF: [fuel.counter] > Compare the counter to a value 

<< compare whether it is Greater than 0 >> 

THEN: [mailbot.game] >> Movement >> Stop  

THEN: [Special Object] >> Group of events>> Deactivate 

<< Select the Spacemail group >> 

THEN: [mailbot.game] >> Animation >> Change >> Animation Sequence 

<< select “Delivered” >> 

THEN: [Special Object] >> Change a global value>> Set 

<< Choose value Delivered >> 

<< input: 1 >> 

THEN: [Sound Object] > Samples > Play sample  

<< Choose the “GAS04.wav” sound >> 

THEN: [Sound Object] > Samples > Play sample  

<< Choose the “Wopapop.wav” sound >> 

THEN: [Sound Object] > Samples > Stop a specific sample  

<< Choose the “flyjet-cut.wav” sound >> 

 

And here’s the last event that are gonna’ create today! 

 

IF: [Keyboard & Mouse Object] >> The Keyboard >> Upon pressing a key 

<< press ENTER on your keyboard >> 

IF: [Special Object] >> Compare to a global value 

<< Choose value Delivered >> 

<< compare if it is Equal 1 >> 

THEN: [Storyboard Controls] >> Next frame 

 

 

 

Aaaaand… That’s it! Congratulations!  

 



Page 31/32 

This was a pretty long tutorial, but we finally made it! Hope that you’ll find out that the game we 

have produced together was worth all this amount of work and time. Mailbot 7890-Kappa-91 

finally has his shot at delivering the messages to the settlers of Voopookoo, and you – finally – 

have a chance to show that you’re the best mailbot operator in the whole Galaxy Postage 

Office! Go out there and make us proud! 

 

 

Thanks for your time and see you again soon! 

 

Cheers! 

 

 
 

If you have any questions, suggestions or just need help – 

 mail me at marchewkowy@gmail.com 

 

 

 

 

 

 

 

 

 

 

 

 

 

To all you pirate-lovers out there: don’t get offended by my anti-pirate jokes, they are just jokes 

after all! Having said that… I truly, truly think that a ninja warrior could wipe the floor with a 

pirate, anytime, any day! ;) And no, I won’t walk the plank, thanks for your proposal. ;) 

 

 

All copyrighted materials, names, titles, images and visualizations (as “Battlestar Galactica”, the 

xenomorph from “Alien”, “The Hulk” etc.) belong to their respective owners and are used here 

exclusively as a parody or a satirist fan tribute – no copyright infringement intended.  

 

 



Page 32/32 

 

You have been reading… 

 

 
 

 
 

 
 

 

 

Created for Multimedia Fusion 2 & Multimedia Fusion 2: Developer 

 

 

Always be sure to have your MMF2 up-to-date! 

 


